Return to search

Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées

Dans cette thèse, on considère une chaîne de Markov $(X_i)$ à espace d'états continu que l'on suppose récurrente positive et stationnaire. L'objectif est d'estimer la densité de transition $\Pi$ définie par $\Pi(x,y)dy=P(X_{i+1}\in dy|X_i=x)$. On utilise la sélection de modèles pour construire des estimateurs adaptatifs. On se place dans le cadre minimax sur $L^2$ et l'on s'intéresse aux vitesses de convergence obtenues lorsque la densité de transition est supposée régulière. Le risque intégré de nos estimateurs est majoré grâce au contrôle de processus empiriques par une inégalité de concentration de Talagrand. Dans une première partie, on suppose que la chaîne est directement observée. Deux estimateurs différents sont présentés, l'un par quotient, l'autre minimisant un contraste moindres carrés et prenant également en compte l'anisotropie du problème. Dans une deuxième partie, on aborde le cas d'observations bruitées $Y_1,\dots, Y_{n+1}$ où $Y_i=X_i+\varepsilon_i$ avec $(\varepsilon_i)$ un bruit indépendant de la chaîne $(X_i)$. On généralise à ce cas les deux estimateurs précédents. Des simulations illustrent les performances des estimateurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00180107
Date01 October 2007
CreatorsLacour, Claire
PublisherUniversité René Descartes - Paris V
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds