Return to search

Pathwise decompositions of Lévy processes : applications to epidemiological modeling / Décompositions trajectorielles de processus de Lévy : application à la modélisation de dynamiques épidémiologiques

Cette thèse est consacrée à l'étude de décompositions trajectorielles de processus de Lévy spectralement positifs et des relations de dualité pour des processus de ramification, motivée par l'utilisation de ces derniers comme modèles probabilistes d'une dynamique épidémiologique. Nous modélisons l'arbre de transmission d'une maladie comme un arbre de ramification, où les individus évoluent indépendamment les uns des autres, ont des durées de vie i.i.d. (périodes d'infectiosité) et donnent naissance (infections secondaires) à un taux constant durant leur vie. Le processus d'incidence dans ce modèle est un processus de Crump-Mode-Jagers (CMJ) et le but principal des deux premiers chapitres est d'en caractériser la loi conjointement avec l'arbre de transmission partiellement observé, inferé à partir des données de séquences. Dans le Chapitre I, nous obtenons une description en termes de fonctions génératrices de la loi du nombre d'individus infectieux, conditionnellement à l'arbre de transmission reliant les individus actuellement infectés. Une version plus élégante de cette caractérisation est donnée dans le Chapitre II, en passant par un résultat général d'invariance par retournement du temps pour une classe de processus de ramification. Finallement, dans le Chapitre III nous nous intéressons à la loi d'un processus de ramification (sous)critique vu depuis son temps d'extinction. Nous obtenons un résultat de dualité qui implique en particulier l'invariance par retournement du temps depuis leur temps d'extinction des processus CMJ (sous)critiques et de l'excursion hors de 0 de la diffusion de Feller critique (le processus de largeur de l'arbre aléatoire de continuum). / This dissertation is devoted to the study of some pathwise decompositions of spectrally positive Lévy processes, and duality relationships for certain (possibly non-Markovian) branching processes, driven by the use of the latter as probabilistic models of epidemiological dynamics. More precisely, we model the transmission tree of a disease as a splitting tree, i.e. individuals evolve independently from one another, have i.i.d. lifetimes (periods of infectiousness) that are not necessarily exponential, and give birth (secondary infections) at a constant rate during their lifetime. The incidence of the disease under this model is a Crump-Mode-Jagers process (CMJ); the overarching goal of the two first chapters is to characterize the law of this incidence process through time, jointly with the partially observed (inferred from sequence data) transmission tree. In Chapter I we obtain a description, in terms of probability generating functions, of the conditional likelihood of the number of infectious individuals at multiple times, given the transmission network linking individuals that are currently infected. In the second chapter, a more elegant version of this characterization is given, passing by a general result of invariance under time reversal for a class of branching processes. Finally, in Chapter III we are interested in the law of the (sub)critical branching process seen from its extinction time. We obtain a duality result that implies in particular the invariance under time reversal from their extinction time of the (sub)critical CMJ processes and the excursion away from 0 of the critical Feller diffusion (the width process of the continuum random tree).

Identiferoai:union.ndltd.org:theses.fr/2016PA066651
Date14 December 2016
CreatorsDávila-Felipe, Miraine
ContributorsParis 6, Cazelles, Bernard, Lambert, Amaury
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds