Return to search

Wind turbine blade modeling - setting out from experimental data

Complex systems can be divided into simpler substructures. Determining the properties of each subcomponent by experimental procedures is practical and can serve to verify or calibrate finite element models. In this work, an existing model of a wind turbine blade was improved by use of experimental data. Such a blade is a subpart of a complete wind turbine. For calibration purpose, several material tests were made in order to determine the stiffness and mass properties. Later on, vibration tests of the blades were conducted and compared with simulation results of the improved model. Geometry variability within sets of blades was also studied. The blade twist angles and the center of gravity positions were found to vary moderately, which accounts for differences in blades’ dynamic behavior. Correlations between experimental data and analytical model results were very high for the first eight modeshapes. That is, according to the Model Assurance Criterion the calibrated model achieves a high-quality representation of reality. However, torsional modes in the computer model occur at a higher frequency than the experimental ones. Substructuring of the turbine allows the blades to be modeled and validated independently of the other substructures and can later be incorporated into a complete model of the turbine.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-26054
Date January 2013
CreatorsKleinknecht, Mathias, Fernández Álvarez, Alfredo
PublisherLinnéuniversitetet, Institutionen för maskinteknik (MT), Linnéuniversitetet, Institutionen för maskinteknik (MT)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0705 seconds