Return to search

Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede / A tensorial approach to the study of dualities between lattice spin models

Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N. / In this work, we study the dualities between spin models in two-dimensional lattices from a tensorial approach. In this approach, we associate tensor components to the vertices and links so that the partition function Z is constructed by a contraction of the indices of the tensor components thereby making Z a scalar under change of basis of the group algebra C[G] used to de_ne the tensors. Having obtained this, and noting that the values of the components _x the studied model, we obtain a di_erent model for each basis transformation proposed. These di_erent models, however, have the same partition function since Z is invariant under these transformations. In fact we can obtain several models all dual to each other in this manner. We then focus on Zn spin models, which include the Ising model, the Potts model and Ashkin- Teller-Potts model. Exploring a speci_c basis transformation, we are able to rederive Kramers and Wanniers\' duality for the Ising model. With analogous arguments, we also show that Potts models with n = 3 and n = 4 are self-dual whereas this property is lost for n _ 5. The Ashkin-Teller-Potts model is shown to be self-dual for all n 2 N.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14112014-130241
Date06 June 2014
CreatorsMorais, Alysson Ferreira
ContributorsTeotonio Sobrinho, Paulo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0022 seconds