• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies in integrable quantum lattice models and classical hierarchies

Zuparic, Matthew Luke January 2009 (has links)
The following work is an exploration into certain topics in the broad world of integrable models, both classical and quantum, and consists of two main parts of roughly equal length. The first part, consisting of chapters 1-3, concerns itself mainly with correlations between results in classical hierarchies and quantum lattice models. The second part, consisting of chapters 4-6, deals almost entirely with deriving results concerned with quantum lattice models.
2

Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede / A tensorial approach to the study of dualities between lattice spin models

Morais, Alysson Ferreira 06 June 2014 (has links)
Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N. / In this work, we study the dualities between spin models in two-dimensional lattices from a tensorial approach. In this approach, we associate tensor components to the vertices and links so that the partition function Z is constructed by a contraction of the indices of the tensor components thereby making Z a scalar under change of basis of the group algebra C[G] used to de_ne the tensors. Having obtained this, and noting that the values of the components _x the studied model, we obtain a di_erent model for each basis transformation proposed. These di_erent models, however, have the same partition function since Z is invariant under these transformations. In fact we can obtain several models all dual to each other in this manner. We then focus on Zn spin models, which include the Ising model, the Potts model and Ashkin- Teller-Potts model. Exploring a speci_c basis transformation, we are able to rederive Kramers and Wanniers\' duality for the Ising model. With analogous arguments, we also show that Potts models with n = 3 and n = 4 are self-dual whereas this property is lost for n _ 5. The Ashkin-Teller-Potts model is shown to be self-dual for all n 2 N.
3

Uma abordagem tensorial para o estudo de dualidades entre modelos de spin na rede / A tensorial approach to the study of dualities between lattice spin models

Alysson Ferreira Morais 06 June 2014 (has links)
Neste trabalho, estudamos as dualidades entre modelos de spin em redes bidimensionais a partir de uma abordagem tensorial. Nessa abordagem, componentes de tensores são associadas aos vértices e arestas da rede de forma que a função de partição Z é construída a partir da contração dos índices dessas componentes e é, portanto, um escalar por mudanças de base da álgebra de grupo C[G] utilizada para a definição dos tensores. A partir daí, e observando que a forma das componentes fixam o modelo estudado, obtemos um modelo diferente para cada mudança de base proposta. Esses diferentes modelos possuirão, no entanto, a mesma função de partição, já que esta é um invariante sob tais transformações. De fato, haverá uma infinidade de modelos todos duais entre si. Neste ponto, fixamos nossa atenção nos modelos com spin Zn, nos quais estão incluídos o modelo de Ising, o modelo de Potts e o modelo de Ashkin-Teller-Potts. Explorando uma transformação de base específica, fomos capazes de rederivar a dualidade de Kramers e Wanniers para o modelo de Ising. Usando argumentos análogos, mostramos também que os modelos de Potts com n = 3 e 4 são autoduais e que não existe autodualidade para este modelo com n _ 5. O modelo de Ashkin-Teller-Potts foi mostrado ser autodual para todo n 2 N. / In this work, we study the dualities between spin models in two-dimensional lattices from a tensorial approach. In this approach, we associate tensor components to the vertices and links so that the partition function Z is constructed by a contraction of the indices of the tensor components thereby making Z a scalar under change of basis of the group algebra C[G] used to de_ne the tensors. Having obtained this, and noting that the values of the components _x the studied model, we obtain a di_erent model for each basis transformation proposed. These di_erent models, however, have the same partition function since Z is invariant under these transformations. In fact we can obtain several models all dual to each other in this manner. We then focus on Zn spin models, which include the Ising model, the Potts model and Ashkin- Teller-Potts model. Exploring a speci_c basis transformation, we are able to rederive Kramers and Wanniers\' duality for the Ising model. With analogous arguments, we also show that Potts models with n = 3 and n = 4 are self-dual whereas this property is lost for n _ 5. The Ashkin-Teller-Potts model is shown to be self-dual for all n 2 N.
4

Quantum Dynamics in Lattice Models of Interacting Spins and Fermions

Heitmann, Tjark 24 May 2022 (has links)
This cumulative dissertation is based on the publications [P1–P6], covering various aspects in theoretical studies of isolated quantum many-body systems. The transport and relaxation dynamics in quantum lattice models are studied with a particular focus on (i) the effect of a mass imbalance between different particles on their relaxation dynamics as well as (ii) the influence of generic perturbations on different reference dynamics. As for (i), the dynamics of two mutually interacting fermionic particle species on a lattice are investigated for different mass ratios between the two species [P4]. Numerical studies of density dynamics show that diffusive transport which is expected for small mass imbalances persists also for moderate imbalances and becomes anomalous for stronger imbalances. On the other hand, while transport is suppressed in the limit of infinite imbalance, i.e., if one particle species is immobile, this effective localization is shown to give way to anomalous diffusion as soon as the heavy particle species gains a finite mobility. Regarding (ii), the effect of perturbations on dynamics is investigated from the perspective of projection-operator techniques [P6]. As a main result, it is demonstrated that simple exponential damping, which is expected in the overwhelming majority of cases, may only occur for the density matrix in the interaction picture. Within this approach, this simple damping carries over to the time dependence of standard correlation functions only in certain cases. In particular, the possibility of nontrivial damping in physically relevant perturbation scenarios is discussed. A considerable portion of this work is concerned with the implementation of powerful numerical and (semi-)analytical tools to overcome the enhanced computational complexity in numerical studies of quantum many-body systems. This includes the concept of dynamical quantum typicality [P2, P3], numerical linked-cluster expansions [P5], and projection-operator techniques, as well as the combined use of available symmetries [P1].
5

Modelos com infinitos estados absorventes analiticamente solúveis / Models with infinitely many absorbing states analitically soluble

Silva, Evandro Freire da 03 March 2005 (has links)
Neste trabalho estudamos alguns modelos com conservacao de particulas, que apresentam uma transicao de fase entre um estado estacionario ativo e infinitos estados absorventes. Os estados ativos de cada modelo sao compostos por configuracoes equiprovaveis, correspondendo, de acordo com a formulacao gibbsiana da Mecanica Estatistica, a um ensemble microcanonico. Efetuando uma mudanca de ensemble, podemos calcular as grandezas fisicas para cada um destes modelos utilizando a tecnica de matrizes de transferencia, explicada neste trabalho. Realizamos simulacoes destes modelos e confirmamos as hipoteses que sustentam o uso desta tecnica. Por fim, analisamos dois modelos derivados dos anteriores que nao podem ser estudados com base nesta tecnica. / In this work we studied some models with particle conservation which present a phase transition between an active stationary state and infinitely many absorbing states. The active states of each model consist of equiprobable configurations, corresponding, according to Gibbs's formulation of Statistical Mechanics, to a microcanonical ensemble. Carrying out an ensemble change, we can calculate the physical quantities for each one of these models using the transfer matrix technique, explained in this work. We performed simulations of these models and confirmed the hypothesis that sustain the use of this technique. Finally, we analysed two models derived from the previous ones for which this technique cannot be applied.
6

Computational Methods for the Measurement of Entanglement in Condensed Matter Systems

Kallin, Ann Berlinsky January 2014 (has links)
At the interface of quantum information and condensed matter physics, the study of entanglement in quantum many-body systems requires a new toolset which combines concepts from each. This thesis introduces a set of computational methods to study phases and phase transitions in lattice models of quantum systems, using the Renyi entropies as a means of quantifying entanglement. The scaling of entanglement entropy can give valuable insight into the phase of a condensed matter system. It can be used to detect exotic types of phases, to pinpoint transitions between phases, and can give us universal information about a system. The first approach in this thesis is a technique to measure entanglement in finite size lattice systems using zero-temperature quantum Monte Carlo simulations. The algorithm is developed, implemented, and used to explore anomalous entanglement scaling terms in the spin-1/2 Heisenberg antiferromagnet. In the second part of this thesis, a new and complementary numerical technique is introduced to study entanglement not just in finite size systems, but as we approach the thermodynamic limit. This “numerical linked-cluster expansion” is used to study two different systems at their quantum critical points — continuous phase transitions occurring at zero temperature, at which these systems exhibit universal properties. Remarkably, these universal properties can be reflected in the scaling of entanglement. Entanglement offers a new perspective on condensed matter systems, one which takes us closer to genuinely understanding what goes on in these materials at the quantum mechanical level. This thesis demonstrates the first steps in developing an extensive list of computational tools that can be used to study entanglement over a wide range of interacting quantum many-body systems. With the ever increasing computational power available, it may be only a matter of time before these tools are used to create a comprehensive framework for the characterization of condensed matter phases and phase transitions.
7

Modelos com infinitos estados absorventes analiticamente solúveis / Models with infinitely many absorbing states analitically soluble

Evandro Freire da Silva 03 March 2005 (has links)
Neste trabalho estudamos alguns modelos com conservacao de particulas, que apresentam uma transicao de fase entre um estado estacionario ativo e infinitos estados absorventes. Os estados ativos de cada modelo sao compostos por configuracoes equiprovaveis, correspondendo, de acordo com a formulacao gibbsiana da Mecanica Estatistica, a um ensemble microcanonico. Efetuando uma mudanca de ensemble, podemos calcular as grandezas fisicas para cada um destes modelos utilizando a tecnica de matrizes de transferencia, explicada neste trabalho. Realizamos simulacoes destes modelos e confirmamos as hipoteses que sustentam o uso desta tecnica. Por fim, analisamos dois modelos derivados dos anteriores que nao podem ser estudados com base nesta tecnica. / In this work we studied some models with particle conservation which present a phase transition between an active stationary state and infinitely many absorbing states. The active states of each model consist of equiprobable configurations, corresponding, according to Gibbs's formulation of Statistical Mechanics, to a microcanonical ensemble. Carrying out an ensemble change, we can calculate the physical quantities for each one of these models using the transfer matrix technique, explained in this work. We performed simulations of these models and confirmed the hypothesis that sustain the use of this technique. Finally, we analysed two models derived from the previous ones for which this technique cannot be applied.
8

Fluid behavior in porous solids: Microscopic insight by lattice models

Schneider, Daniel 07 January 2019 (has links)
The thesis at hand is a collection of the publications written and co-authored by the author on the subject of fluid phase equilibria and dynamics in porous materials as studied with computational methods. The first part addresses fluid adsorption in confined mesoporous spaces with a particular focus on hysteresis phenomena. For this purpose, first the sorption mechanisms in canonical pore segments and simple interconnected pores were studied. Based on those insights, a statistical theory describing the phase equilibria in large-scale disordered pore systems was developed, yielding novel understanding of the sorption phenomena in complex mesoporous materials and promising future application for the characterization of these pore spaces. The second part of this thesis considers the mass transfer properties of hierarchical porous solids combining two different porosities. Here, the relationship between the structural biporous composition of the host material and the molecular dynamics were studied using specifically developed statistical simulations. Particularly, micro-mesoporous materials, hollow core-shell silica nanoparticles, and mixed matrix membranes were considered. For each case, comparison to experimental data led to a deeper understanding of the underlying transport processes. Each of the two chapters is preceded by a short introduction into the subject focused on presenting the concepts used in the corresponding publications.:1 Introduction 2 Adsorption in mesoporous solids 2.1 Filling dynamics of closed end nanocapillaries 2.2 Modeling the influence of side stream and ink bottle structures on adsorp- tion/desorption dynamics of fluids in long pores 2.3 Phase transitions in disordered mesoporous solids 3 Diffusion in hierarchical biporous materials 3.1 Mesopore-promoted transport in microporous materials 3.2 Transport properties of hierarchical micro-mesoporous materials 3.3 Diffusion and molecular exchange in hollow core-shell silica nanoparticles 3.4 An untrodden path: Versatile fabrication of self-supporting polymer- stabilized percolation membranes (PSPMs) for gas separation 3.5 Short-time diffusion behavior of Brownian particles in confining potentials Bibliography Author contributions Acknowledgements / Vorliegende Dissertation ist eine Sammlung der vom Autor verfassten und mitverfassten Publikationen über fluide Phasengleichgewichte und Fluiddynamik in porösen Materialien, untersucht mit Hilfe von computergestützten Methoden. Der erste Teil handelt von Flüssigkeitsadsorption in mesoporösen Porenräumen mit Schwerpunkt Hysteresephänomene. Dabei wurden zuerst Sorptionsmechanismen in kanonischen Porensegmenten und einfachen zusammengesetzten Porenmodellen untersucht. Aufbauend auf diese Erkenntnisse wurde dann eine statistische Theorie entwickelt, welche es ermöglicht, Phasengleichgewichte in komplexen ungeordneten Porenräumen zu beschreiben. Die entwickelte Methode erlaubt ein erweitertes Verständnis über Sorptionsphänomene in komplexen mesoporösen Materialien und die Anwendung in der Charakterisierung dieser Porenräume erscheint aussichtsreich. Der zweite Teil der Dissertation beschäftigt sich mit den Gastransporteigenschaften von hierarchischen, aus zwei Porösitäten zusammengesetzten Festkörpern. Dabei stand vor allem der Zusammenhang zwischen der biporösen Komposition des Materials und der Moleküldynamik im Vordergrund, untersucht unter Zuhilfenahme eigens entwickelter statistischer Simulationen. Betrachtet wurden insbesondere mikro-mesoporöse Materialien, hohle Siliziumdioxid-Nanopartikel und Membranen mit gemischter Matrix. Tiefergehendes Verständnis über die zugrundeliegenden Gastransportprozesse wurde im Vergleich mit experimentellen Ergebnissen erreicht. Beide Kapitel werden durch eine kurze Einführung in die jeweilige Thematik und die den nachfolgenden Publikationen zugrundeliegenden Konzepten ergänzt.:1 Introduction 2 Adsorption in mesoporous solids 2.1 Filling dynamics of closed end nanocapillaries 2.2 Modeling the influence of side stream and ink bottle structures on adsorp- tion/desorption dynamics of fluids in long pores 2.3 Phase transitions in disordered mesoporous solids 3 Diffusion in hierarchical biporous materials 3.1 Mesopore-promoted transport in microporous materials 3.2 Transport properties of hierarchical micro-mesoporous materials 3.3 Diffusion and molecular exchange in hollow core-shell silica nanoparticles 3.4 An untrodden path: Versatile fabrication of self-supporting polymer- stabilized percolation membranes (PSPMs) for gas separation 3.5 Short-time diffusion behavior of Brownian particles in confining potentials Bibliography Author contributions Acknowledgements
9

Gradientní modely / Gradientní modely

Bernát, Marek January 2012 (has links)
We have investigated gradient models, one of them was a model with double-well potential and the other one a so called extended model. In dimension two we have calculated exact free energies of the disseminated edge configurations for the extended model and for arbitrary dimension we have derived bounds on these free energies. Combining these bounds with an argument on exstince of bad contours together with the estimate of the number of these contours and using the method of reflection positivity we have been able to show that at low temperatures there is a phase transition in the extended model. We have further shown that the phase transition exists also in the double-well model as long as a conjecture on estimates of mean energy holds. Besides these results the thesis also contains basic tools of statistical physics and facts from related fields, as well as basic results on gradient models, so that our work can serve as an introduction into these areas.
10

Acoustic waves in porous media : numerical study of wave propagation in porous media with one or many mineral components : applications to real Fontainebleau and STATOIL samples / Ondes acoustiques dans milieux poreux : étude numérique de la propagation des ondes dans milieux poreux avec un ou plusieurs composantes minérales : applications aux échantillons réels de Fontainebleau et de STATOIL

Nguyen, The Anh 22 September 2015 (has links)
L’objectif de ma thèse est d'étudier la propagation des ondes acoustiques dans les milieux poreux. La théorie de l'homogénéisation (Boutin et Auriault, 1990; Malinouskaya, 2007; Li, 2010) est utilisée avec les modèles de réseaux tels que LBM, LSM, LSM2S, LBM-LSM, LBM-LSM2S. Ces modèles nous permettent de déterminer les propriétés macroscopiques, les vitesses acoustiques et les effets d'atténuation dans les échantillons Fontainebleau avec deux composants (pores et quartz) et les échantillons STATOIL avec trois composantes (pores, quartz et d'argile). La modélisation numérique vise à résoudre 3 problèmes. Le premier problème est la caractérisation des échantillons; par la détermination de la porosité et des fonctions de corrélation avec les composantes de Fourier correspondantes (Adler, 1992; Nguyen, 2013). Le second porte sur la propagation des ondes dans les échantillons secs; les vitesses sont dérivées du tenseur de rigidité efficace C(eff) qui peut être calculé par LSM (Pazdniakou, 2012) ou LSM2S. Le troisième problème correspond aux échantillons saturés par un fluide incompressible ou compressible; les vitesses sont obtenues par résolution de l'équation de Christoffel après les déterminations de C(eff), fr la perméabilité dynamique K et ses réactions à la pression de fluide α et β. Pour les échantillons de Fontainebleau, les calculs sont effectués avec des modèles pré-existents tels que LSM, LBM, LBM-LSM. Ces modèles de bases sont étendus pour milieux avec plusieurs composants solides; ils sont validés via des comparaisons avec d’autres méthodes (Nemat-Nasser et Iwakuma, 1982; Torquato, 1998, 2000; Cohen, 2004). Les vitesses, le module d’élasticité et cisaillement efficace de tous les échantillons secs ainsi que les vitesses et l'atténuation des ondes dans les échantillons saturés sont déterminés. Les séries de résultats obtenues concordent bien avec des corrélations empiriques et théoriques, tels que le modèle d’IOS d’ Arns (1996), les modèles empiriques de Nur et al. (1991), Krief (1990) et avec le modèle de Gassmann. Les résultats numériques sont un peu plus grands que les données expérimentales d’ Han (1986) et de Gomez et al. (2010); les raisons de cette petite différence ont été provisoirement analysées, mais sa cause n'a pas été identifiée sans ambiguïté. / The purpose of this Ph.D. thesis is to study acoustic waves in porous media. The homogenization theory (Boutin and Auriault, 1990; Malinouskaya, 2007; Li, 2010) is used together with the lattice models such as LBM, LSM, LSM2S, LBM-LSM, LBM-LSM2S in order to determine the macroscopic properties, the acoustic velocities, the attenuation effects in Fontainebleau samples with two components (pore and quartz) and in STATOIL samples with three components (pore, quartz and clay). Three problems are studied numerically in this work. The first problem is devoted to characterizations of samples; this is done with the determination of the porosity and of the correlation functions with the corresponding Fourier components (Adler, 1992; Nguyen, 2013). The second one addresses wave propagation in dry samples; the velocities are derived from the effective stiffness tensor C(eff) which can be calculated by LSM (Pazdniakou, 2012) or LSM2S. The third one corresponds to samples saturated by incompressible or compressible fluids; the velocities can be obtained from the Christoffel equation after determining C(eff) , the dynamic permeability K and the reactions to fluid pressure α and β. For Fontainebleau samples, the calculations are performed with basic existing models such as LSM, LBM, LBM-LSM. These basic models are extended to solids with multiple components; they are validated by comparisons with others (Nemat-Nasser and Iwakuma, 1982; Torquato, 1998, 2000; Cohen, 2004). The velocities, the effective bulk and shear modulus of all the dry samples as well as the velocities and the attenuation effected in saturated samples are determined. These results are in good agreement compared with existing models and results, such as the IOS model of Arns (1996), the empirical models of Nur et al. (1991), Krief (1990) and with Gassmann’ s model. The numerical results are slightly larger than the experimental data of Han (1986) and Gomez et al. (2010); the origin of this small discrepancy has been tentatively analyzed, but its cause has not been unambiguously identified.

Page generated in 0.0384 seconds