Return to search

Etude du transfert réactif de l'hydrogène au sein de l'argilite intacte

L'hydrogène gazeux va être produit par la corrosion anaérobique des containers dans le stockage géologique de déchets radioactifs. Ce gaz peut avoir un impact sur la stabilité de la couche géologique, du fait d'une part de son caractère réducteur et d'autre part de sa production en continu pendant environ 100 000 ans. Une augmentation de pression locale peut affecter les propriétés hydro-gazo dynamiques des transferts en hydrogène. Le caractère réducteur de H2 peut modifier les propriétés d'oxydo-réduction de l'argilite du Callovo-Oxfordien (COx) et les propriétés hydrauliques de la barrière, et donc (1) sa minéralogie, (2) la spéciation des radionucléides sortant du container et (3) leur transfert. De plus, si le transport de l'hydrogène gazeux est difficile au sein de la couche géologique, l'augmentation de pression pourrait en induire la fissuration et ainsi créer des chemins préférentiels favorables à cette migration. Un dispositif expérimental a été mis en place afin d'évaluer tant la pression d'entrée de H2(g) que les paramètres de transport par perméation et diffusion à travers le COx. La pression d'entrée de l'hydrogène gazeux au sein de l'argilite du Callovo-Oxfordien saturé est comprise entre 49 et 63 bar. Sachant que la pression maximale attendue est d'environ 80 bar, on pourra donc avoir un déplacement du gaz dans la roche saturée en eau. Pour une saturation supérieure à 0,90 et avec T = 23°C, la perméabilité mesurée est proche de 10-23 m2 et le coefficient de diffusion de 10-12 m2.s-1. Ceci laisse donc envisager un déplacement lent de l'hydrogène dans la roche, par exemple il lui faudra environ 31 710 ans pour traverser un mètre de roche sous l'effet de la diffusion. Il a également été mis en évidence que les paramètres de transport dépendent essentiellement de la saturation de l'échantillon et dépendent peu de la température. Concernant la réactivité, dans des conditions proches de celles dans le stockage, H2 va réduire jusqu'à 9 wt% du Fe(III) structural sous 90°C et PH2 = 5 bar. Cette réaction n'est pas totale et le mécanisme majoritaire va être la sorption de gaz. Les niveaux d'hydrogène ainsi prélevés par le solide atteignent 0,05 wt% à 90°C et PH2 = 0,45 bar. Ce phénomène dépend fortement de la saturation de l'échantillon en eau du fait de la compétition entre H2 et H2O pour se sorber sur les sites de sorption à la surface de l'échantillon. Au total jusqu'à 18 m3 de H2 vont se sorber par m3 de COx sous PH2 = 0,45 bar et T = 90°C en conditions sèches. Ce processus va permettre, en complément du transport de gaz, de diminuer localement la pression en hydrogène.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00770176
Date29 October 2012
CreatorsDidier, Mathilde
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds