• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du transfert réactif de l'hydrogène au sein de l'argilite intacte

Didier, Mathilde 29 October 2012 (has links) (PDF)
L'hydrogène gazeux va être produit par la corrosion anaérobique des containers dans le stockage géologique de déchets radioactifs. Ce gaz peut avoir un impact sur la stabilité de la couche géologique, du fait d'une part de son caractère réducteur et d'autre part de sa production en continu pendant environ 100 000 ans. Une augmentation de pression locale peut affecter les propriétés hydro-gazo dynamiques des transferts en hydrogène. Le caractère réducteur de H2 peut modifier les propriétés d'oxydo-réduction de l'argilite du Callovo-Oxfordien (COx) et les propriétés hydrauliques de la barrière, et donc (1) sa minéralogie, (2) la spéciation des radionucléides sortant du container et (3) leur transfert. De plus, si le transport de l'hydrogène gazeux est difficile au sein de la couche géologique, l'augmentation de pression pourrait en induire la fissuration et ainsi créer des chemins préférentiels favorables à cette migration. Un dispositif expérimental a été mis en place afin d'évaluer tant la pression d'entrée de H2(g) que les paramètres de transport par perméation et diffusion à travers le COx. La pression d'entrée de l'hydrogène gazeux au sein de l'argilite du Callovo-Oxfordien saturé est comprise entre 49 et 63 bar. Sachant que la pression maximale attendue est d'environ 80 bar, on pourra donc avoir un déplacement du gaz dans la roche saturée en eau. Pour une saturation supérieure à 0,90 et avec T = 23°C, la perméabilité mesurée est proche de 10-23 m2 et le coefficient de diffusion de 10-12 m2.s-1. Ceci laisse donc envisager un déplacement lent de l'hydrogène dans la roche, par exemple il lui faudra environ 31 710 ans pour traverser un mètre de roche sous l'effet de la diffusion. Il a également été mis en évidence que les paramètres de transport dépendent essentiellement de la saturation de l'échantillon et dépendent peu de la température. Concernant la réactivité, dans des conditions proches de celles dans le stockage, H2 va réduire jusqu'à 9 wt% du Fe(III) structural sous 90°C et PH2 = 5 bar. Cette réaction n'est pas totale et le mécanisme majoritaire va être la sorption de gaz. Les niveaux d'hydrogène ainsi prélevés par le solide atteignent 0,05 wt% à 90°C et PH2 = 0,45 bar. Ce phénomène dépend fortement de la saturation de l'échantillon en eau du fait de la compétition entre H2 et H2O pour se sorber sur les sites de sorption à la surface de l'échantillon. Au total jusqu'à 18 m3 de H2 vont se sorber par m3 de COx sous PH2 = 0,45 bar et T = 90°C en conditions sèches. Ce processus va permettre, en complément du transport de gaz, de diminuer localement la pression en hydrogène.
2

Etude du transfert réactif de l'hydrogène au sein de l'argilite intacte / Study of reactive transfer of hydrogen within intact clayrock

Didier, Mathilde 29 October 2012 (has links)
L'hydrogène gazeux va être produit par la corrosion anaérobique des containers dans le stockage géologique de déchets radioactifs. Ce gaz peut avoir un impact sur la stabilité de la couche géologique, du fait d'une part de son caractère réducteur et d'autre part de sa production en continu pendant environ 100 000 ans. Une augmentation de pression locale peut affecter les propriétés hydro-gazo dynamiques des transferts en hydrogène. Le caractère réducteur de H2 peut modifier les propriétés d'oxydo-réduction de l'argilite du Callovo-Oxfordien (COx) et les propriétés hydrauliques de la barrière, et donc (1) sa minéralogie, (2) la spéciation des radionucléides sortant du container et (3) leur transfert. De plus, si le transport de l'hydrogène gazeux est difficile au sein de la couche géologique, l'augmentation de pression pourrait en induire la fissuration et ainsi créer des chemins préférentiels favorables à cette migration. Un dispositif expérimental a été mis en place afin d'évaluer tant la pression d'entrée de H2(g) que les paramètres de transport par perméation et diffusion à travers le COx. La pression d'entrée de l'hydrogène gazeux au sein de l'argilite du Callovo-Oxfordien saturé est comprise entre 49 et 63 bar. Sachant que la pression maximale attendue est d'environ 80 bar, on pourra donc avoir un déplacement du gaz dans la roche saturée en eau. Pour une saturation supérieure à 0,90 et avec T = 23°C, la perméabilité mesurée est proche de 10-23 m2 et le coefficient de diffusion de 10-12 m2.s-1. Ceci laisse donc envisager un déplacement lent de l'hydrogène dans la roche, par exemple il lui faudra environ 31 710 ans pour traverser un mètre de roche sous l'effet de la diffusion. Il a également été mis en évidence que les paramètres de transport dépendent essentiellement de la saturation de l'échantillon et dépendent peu de la température. Concernant la réactivité, dans des conditions proches de celles dans le stockage, H2 va réduire jusqu'à 9 wt% du Fe(III) structural sous 90°C et PH2 = 5 bar. Cette réaction n'est pas totale et le mécanisme majoritaire va être la sorption de gaz. Les niveaux d'hydrogène ainsi prélevés par le solide atteignent 0,05 wt% à 90°C et PH2 = 0,45 bar. Ce phénomène dépend fortement de la saturation de l'échantillon en eau du fait de la compétition entre H2 et H2O pour se sorber sur les sites de sorption à la surface de l'échantillon. Au total jusqu'à 18 m3 de H2 vont se sorber par m3 de COx sous PH2 = 0,45 bar et T = 90°C en conditions sèches. Ce processus va permettre, en complément du transport de gaz, de diminuer localement la pression en hydrogène. / Hydrogen gas will be produced by anaerobic corrosion of radioactive waste containers in the geological repository. This gas could affect the geological layer (Callovo-Oxfordian) stability, first due to its reductive capacity and then also due to its continuous production for about 100,000 years. The local pressure increase could affect the properties of hydro-gaseous dynamic of hydrogen transfers. The reductive capacity of H2 could change the redox properties of the Callovo-Oxfordian and the barrier hydraulic properties, and therefore (1) its mineralogy, (2) the speciation of outgoing radionuclides and (3) their transfer. Moreover, if the hydrogen gas transport is difficult within the geological layer, the pressure increase could cause cracking and create preferential pathways for radionuclides migration. An experimental device was developed to measure the entry pressure of H2(g) and transport parameters as permeability and diffusion coefficient through the COx. The entry pressure is estimated to be between 49 and 63 bar. Knowing that the maximum expected pressure is about 80 bar, there may therefore be a displacement of hydrogen gas into the water saturated clayrock. Moreover, for a saturation greater than 0.90 and at T = 23°C, permeability is measured to be close to 10-23 m2 and the diffusion coefficient to be as low as 10-12 m2.s-1. Therefore hydrogen gas will move slowly in the geological layer, for example it will take about 31,710 years to go through one meter of clayrock by diffusion. These transport parameters are found to depend mainly on the sample water saturation and not much on temperature. Regarding hydrogen reactivity, under conditions close to those in the storage, H2 will reduce up to 9 wt% of structural Fe (III) at 90°C and PH2 = 5 bar. This reaction is not complete and hydrogen gas will mainly sorb on the material, with a sorption up to 0.05 wt% at 90°C and PH2 = 0.45 bar. This process depends strongly on the water saturation of the sample, because of a competition between H2 and H2O to sorb on the surface. As a whole, more than 18 m3 of H2 per m3 of COx will sorb in dried conditions. This process will allow, during gas transport, to reduce locally the hydrogen pressure.
3

Modélisation de la formation des décohésions dues à l’hydrogène dans l’acier 18MND5 / Modelling of high pressure hydrogen induced internal cracks in an 18MND5 low alloy steel

Sezgin, Jean-Gabriel 24 February 2017 (has links)
Les viroles en acier microallié 18MND5, destinées aux générateurs de vapeur, présentent une composition hétérogène à plusieurs échelles. Un écart au procédé de fabrication ou une teneur en hydrogène excessive, peuvent conduire à la formation des Décohésions Dues à l’Hydrogène. Ces DDH résultent de la désorption de l’hydrogène interne lors du refroidissement jusqu’à température ambiante. La pression interne n’étant pas mesurables expérimentalement, une modélisation du phénomène est requise. Afin de préciser les mécanismes sous-jacents, il est proposé un scénario de formation de ces défauts s’appuyant conjointement sur une expertise et la modélisation des processus de diffusion-désorption-propagation. Les observations ont révélé une corrélation entre les DDH, les zones ségrégées et les amas de MnS (sites préférentiels d’initiation). Un modèle de diffusion dans un milieu hétérogène a été proposé afin d’évaluer la pression interne associée. La pression maximale excède ainsi 8600 bar en considérant une loi d’Abel-Noble optimisée du gaz réel. Le couplage de ce modèle avec la mécanique de la rupture a permis de quantifier l’évolution des paramètres relatifs à la propagation (pression interne, taille finale, vitesse, …). Un scénario de formation des DDH industriel a ainsi pu être formulé sur la base d’une étude paramétrique. Bien que les simulations préliminaires corroborent le retour d’expérience, le modèle raffiné et la prise en compte du gonflement de la DDH semblent sous-estimer la cinétique. Le caractère multi-fissuré des amas de MnS (homogénéisation des propriétés mécaniques) associé à un critère de rupture à l’échelle locale permettrait d’ajuster ce modèle. / Heat generators are manufactured from ingots of 18MND5 (A508cl3) low alloy steel and present composition heterogeneities at different scales. Under specific conditions (non-respect of guidelines or high initial content of H), Hydrogen Induced Cracks (HIC) may result from diffusion-desorption of internal hydrogen during cooling down to room temperature. Since neither hydrogen redistribution nor its internal pressure within cavities could be measured by experimental techniques, quantitative investigation is based on the modelling of related physical phenomena. A scenario of HIC formation, based on industrial feedback and modelling, has been proposed. A correlation between these defects, segregated areas and clusters of MnS (preferred initiation sites) has been revealed by expertise of HIC. A model of diffusion in heterogeneous alloys has then been proposed to assess the maximal pressure of H2 in such HIC. Simulation has shown that internal pressures above 860MPa are reached by considering an optimized Abel-Noble real gas behavior. The previous model has then been coupled to a failure mechanics procedure to characterize and quantify the crack growth parameters. Based on a parametric study, a scenario of HIC formation during the cooling has been proposed regarding process. Although results from preliminary simulations matched with feedback, the refined model based on the pressure induced elastic deformation of HIC has been developed but provided an underestimated kinetic of crack growth. Consequently, the multi-cracked nature of MnS clusters (homogenization of mechanical properties) and the updated local failure criterion appear to be a viable path to adjust predictions.

Page generated in 0.0738 seconds