• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrosion sous contrainte et fragilisation par l'hydrogène d'alliages d'aluminium de la série 7xxx (Al-Zn-Mg) : identification des paramètres microstructuraux critiques pilotant l'endommagement à l'échelle locale.

Oger, Loïc 23 November 2017 (has links) (PDF)
Dans un contexte normatif toujours plus sévère concernant les rejets automobiles polluants, la substitution des aciers par des alliages d’aluminium dans les structures des véhicules est en plein essor. Ce projet de thèse, qui s’inscrit dans un programme de développement de la société Constellium, cible plus précisément les alliages d’aluminium de la série 7xxx (Al-Zn-Mg) qui, malgré leurs propriétés mécaniques élevées, peuvent présenter une sensibilité à la corrosion sous contrainte (CSC) liée au phénomène de fragilisation par l’hydrogène (FPH). La compréhension des mécanismes mis en jeu dans ce type d’endommagement constitue donc une première étape vers une optimisation métallurgique en vue d’une industrialisation future de ces alliages dans le secteur automobile. La première partie de ces travaux est consacrée à l’étude de l’influence de l’état métallurgique de l’alliage 7046 sur son comportement en CSC et à l’identification des mécanismes de dégradation. Un lien direct a pu être mis en évidence entre l’abattement des propriétés mécaniques et les modes de rupture actifs et la quantité d’hydrogène dans l’alliage. Les deux modes d’endommagement observés, intergranulaire-fragile et transgranulaire-fragile, ont respectivement été attribués à un enrichissement en hydrogène aux joints de grains et au piégeage de l’hydrogène au niveau des précipités intragranulaires. Les interactions entre l’hydrogène et les précipités fins d’une part et les dislocations d’autre part, identifiés comme deux hétérogénéités microstructurales critiques vis-à-vis de la FPH, ont été étudiées à une échelle plus locale dans la seconde partie du travail de thèse. Les essais ont été réalisés sur des échantillons modèles, chargés en hydrogène en milieu H2SO4 sous polarisation cathodique et la profondeur de pénétration de l’hydrogène a été évaluée par SKPFM (Scanning Kelvin Probe Force Microscopy). L’ensemble des résultats obtenus met en évidence : 1/ un effet « barrière » des précipités fins et des dislocations sur la diffusion de l’hydrogène en relation avec un abattement des propriétés mécaniques moins important, 2/ un transport possible de l’hydrogène par les dislocations et 3/ l’efficacité du SKPFM pour déterminer précisément des coefficients de diffusion apparents de l’hydrogène. Ces résultats ouvrent ainsi de nouvelles pistes vers la compréhension des mécanismes de CSC dans les alliages Al-Zn-Mg.
2

Corrosion sous contrainte et fragilisation par l'hydrogène d'alliages d'aluminium de la série 7xxx (Al-Zn-Mg) : identification des paramètres microstructuraux critiques pilotant l'endommagement à l'échelle locale. / Stress Corrosion Cracking and Hydrogen Embrittlement of a 7xxx (Al-Zn-Mg) aluminium alloy : identification of microstructural parameters controlling the damage at a local scale.

Oger, Loïc 23 November 2017 (has links)
Dans un contexte normatif toujours plus sévère concernant les rejets automobiles polluants, la substitution des aciers par des alliages d’aluminium dans les structures des véhicules est en plein essor. Ce projet de thèse, qui s’inscrit dans un programme de développement de la société Constellium, cible plus précisément les alliages d’aluminium de la série 7xxx (Al-Zn-Mg) qui, malgré leurs propriétés mécaniques élevées, peuvent présenter une sensibilité à la corrosion sous contrainte (CSC) liée au phénomène de fragilisation par l’hydrogène (FPH). La compréhension des mécanismes mis en jeu dans ce type d’endommagement constitue donc une première étape vers une optimisation métallurgique en vue d’une industrialisation future de ces alliages dans le secteur automobile. La première partie de ces travaux est consacrée à l’étude de l’influence de l’état métallurgique de l’alliage 7046 sur son comportement en CSC et à l’identification des mécanismes de dégradation. Un lien direct a pu être mis en évidence entre l’abattement des propriétés mécaniques et les modes de rupture actifs et la quantité d’hydrogène dans l’alliage. Les deux modes d’endommagement observés, intergranulaire-fragile et transgranulaire-fragile, ont respectivement été attribués à un enrichissement en hydrogène aux joints de grains et au piégeage de l’hydrogène au niveau des précipités intragranulaires. Les interactions entre l’hydrogène et les précipités fins d’une part et les dislocations d’autre part, identifiés comme deux hétérogénéités microstructurales critiques vis-à-vis de la FPH, ont été étudiées à une échelle plus locale dans la seconde partie du travail de thèse. Les essais ont été réalisés sur des échantillons modèles, chargés en hydrogène en milieu H2SO4 sous polarisation cathodique et la profondeur de pénétration de l’hydrogène a été évaluée par SKPFM (Scanning Kelvin Probe Force Microscopy). L’ensemble des résultats obtenus met en évidence : 1/ un effet « barrière » des précipités fins et des dislocations sur la diffusion de l’hydrogène en relation avec un abattement des propriétés mécaniques moins important, 2/ un transport possible de l’hydrogène par les dislocations et 3/ l’efficacité du SKPFM pour déterminer précisément des coefficients de diffusion apparents de l’hydrogène. Ces résultats ouvrent ainsi de nouvelles pistes vers la compréhension des mécanismes de CSC dans les alliages Al-Zn-Mg. / Automotive industry is increasingly affected by standards requiring a major cut of polluting emissions, leading R&D policies to focus on replacing steel by aluminum alloys. This thesis project, initiated by the manufacturer Constellium, focuses on 7xxx (Al-Zn-Mg) aluminum alloys known to have high mechanical properties but also to be susceptible to stress corrosion cracking (SCC) partly attributed to hydrogen embrittlement (HE). Understanding the mechanisms involved would be a first step towards a metallurgical optimization and a future industrialization of these alloys. The first part focuses on the SCC behavior of the 7046 aluminum alloy, related to its microstructure, and the identification of degradation mechanisms involved. A hydrogen amount – loss of mechanical properties relationship was highlighted. The damage observed was explained by the presence of hydrogen in the grain boundaries and by a trapping effect of the intragranular hardening precipitates, limiting the hydrogen diffusion to the grain boundaries. Interactions between hydrogen and hardening precipitates and dislocations, both identified as critical microstructural heterogeneities for HE, are studied at a local scale in a second part. The hydrogen effect was characterized by penetration depth measurements made by SKPFM (Scanning Kelvin Probe Force Microscopy) on “model” samples cathodically charged in H2SO4. The whole results finally highlight: 1/ a “shielding” effect of fine precipitates and dislocations on hydrogen diffusivity related to a lower susceptibility to HE, 2/ hydrogen transport by dislocations and 3/ the efficiency of SKPFM to precisely measure effective diffusion coefficients of hydrogen. These results lead to new opportunities to understand SCC mechanisms in Al-Zn-Mg alloys.
3

Étude comparative de l'effet de l'hydrogène sur la dureté de l'acier inoxydable 410, l'acier au carbone 1008 et l'acier inoxydable 444

Ravalison Soloarivelo, Francia January 2021 (has links) (PDF)
No description available.
4

Modélisation de la formation des décohésions dues à l’hydrogène dans l’acier 18MND5 / Modelling of high pressure hydrogen induced internal cracks in an 18MND5 low alloy steel

Sezgin, Jean-Gabriel 24 February 2017 (has links)
Les viroles en acier microallié 18MND5, destinées aux générateurs de vapeur, présentent une composition hétérogène à plusieurs échelles. Un écart au procédé de fabrication ou une teneur en hydrogène excessive, peuvent conduire à la formation des Décohésions Dues à l’Hydrogène. Ces DDH résultent de la désorption de l’hydrogène interne lors du refroidissement jusqu’à température ambiante. La pression interne n’étant pas mesurables expérimentalement, une modélisation du phénomène est requise. Afin de préciser les mécanismes sous-jacents, il est proposé un scénario de formation de ces défauts s’appuyant conjointement sur une expertise et la modélisation des processus de diffusion-désorption-propagation. Les observations ont révélé une corrélation entre les DDH, les zones ségrégées et les amas de MnS (sites préférentiels d’initiation). Un modèle de diffusion dans un milieu hétérogène a été proposé afin d’évaluer la pression interne associée. La pression maximale excède ainsi 8600 bar en considérant une loi d’Abel-Noble optimisée du gaz réel. Le couplage de ce modèle avec la mécanique de la rupture a permis de quantifier l’évolution des paramètres relatifs à la propagation (pression interne, taille finale, vitesse, …). Un scénario de formation des DDH industriel a ainsi pu être formulé sur la base d’une étude paramétrique. Bien que les simulations préliminaires corroborent le retour d’expérience, le modèle raffiné et la prise en compte du gonflement de la DDH semblent sous-estimer la cinétique. Le caractère multi-fissuré des amas de MnS (homogénéisation des propriétés mécaniques) associé à un critère de rupture à l’échelle locale permettrait d’ajuster ce modèle. / Heat generators are manufactured from ingots of 18MND5 (A508cl3) low alloy steel and present composition heterogeneities at different scales. Under specific conditions (non-respect of guidelines or high initial content of H), Hydrogen Induced Cracks (HIC) may result from diffusion-desorption of internal hydrogen during cooling down to room temperature. Since neither hydrogen redistribution nor its internal pressure within cavities could be measured by experimental techniques, quantitative investigation is based on the modelling of related physical phenomena. A scenario of HIC formation, based on industrial feedback and modelling, has been proposed. A correlation between these defects, segregated areas and clusters of MnS (preferred initiation sites) has been revealed by expertise of HIC. A model of diffusion in heterogeneous alloys has then been proposed to assess the maximal pressure of H2 in such HIC. Simulation has shown that internal pressures above 860MPa are reached by considering an optimized Abel-Noble real gas behavior. The previous model has then been coupled to a failure mechanics procedure to characterize and quantify the crack growth parameters. Based on a parametric study, a scenario of HIC formation during the cooling has been proposed regarding process. Although results from preliminary simulations matched with feedback, the refined model based on the pressure induced elastic deformation of HIC has been developed but provided an underestimated kinetic of crack growth. Consequently, the multi-cracked nature of MnS clusters (homogenization of mechanical properties) and the updated local failure criterion appear to be a viable path to adjust predictions.

Page generated in 0.0276 seconds