• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 2
  • Tagged with
  • 41
  • 15
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution au développement d'un procédé pour la neutralisation du lactosérum électro-activé in situ du réacteur par un mode électrolytique

Allagui, Molka 24 September 2021 (has links)
L'électro-activation (EA) est une approche novatrice qui permet l'isomérisation du lactose en lactulose directement in situ du lactosérum. Cependant, le lactosérum électro-activé (LA-EA) possède un pH hautement alcalin. Alors, l'objectif de ce travail est de contribuer au développement d'un procédé électrolytique pour la neutralisation du LA-EA. La détermination de l'effet des paramètres opératoires et physico-chimiques du milieu électro-activé sur la formation du lactulose a montré qu'un rendement maximum en lactulose de 34,71% est obtenu en utilisant une solution de lactosérum d'une concentration de 7% et 60 min de temps d'électro-activation sous une intensité du courant de 1000 mA après un temps de relaxation de 48 h. Trois configurations électrolytiques ont été étudiées pour la neutralisation de la solution du lactosérum: (1) en neutralisant avec l'anolyte généré dans le compartiment anodique; (2) en inversant les deux électrodes (cathode et anode) et (3) en introduisant le LA-EA dans le compartiment central du réacteur. Les résultats ont montré la faisabilité du processus d'électro-neutralisation. En effet, le pH de la solution a diminué soit en ajoutant des ions H⁺ (cas des configurations 1 et 2), ou en éliminant les ions OH⁻ de la solution (cas de la configuration 3). De plus, il a été révélé que l'électro-neutralisation est ralentie lorsque (I) augmente pour les deux configurations 1 et 2, tandis que pour la configuration 3, elle est accélérée. Les résultats de l'évaluation de l'effet de ce processus sur les propriétés du LA-EA ont montré que la neutralisation de la solution après un temps de relaxation de 48 h n'a pas affecté la composition glucidique du LA-EA, notamment le lactulose. De plus, elle a permis d'améliorer les propriétés techno-fonctionnelles des poudres résultantes en particulier en termes de reconstitution instantanée. / Electro activation (EA) is a novel approach that allows the isomerization of lactose to lactulose in situ from whey. However, electro-activated whey (LA-EA) has a highly alkaline pH. Therefore, the objective of this work is to contribute to the development of an electrolytic process for the neutralization of LA-EA. The determination of the effect of physico-chemical parameters on the formation of lactulose showed that the maximum lactulose yield (34.71%) is obtained for a feed concentration of 7% at 60 min of electro-activation, under a current intensity of 1000 mA after a relaxation time of 48 h. Three electrolytic configurations were studied for neutralization of the whey solution: (1) neutralizing with the anolyte generated at the anode compartment; (2) reversing the two electrodes (cathode and anode) and (3) introducing LA-EA into the central compartment of the reactor. The results showed the feasibility of the electro-neutralization process. Indeed, the pH of the solution decreased either by adding H⁺ ions (case of configurations 1 and 2), or by removing OH⁻ ions from the solution (case of configuration 3). Furthermore, it was revealed that electro-neutralization is slowed down when (I) increases for both configurations 1 and 2, while for configuration 3, it is accelerated. The results of the evaluation of the effect of this process on the properties of LA-EA showed that the neutralization of the solution after a relaxation time of 48 h did not affect the carbohydrate composition of LA-EA, especially lactulose. Moreover, it improved the techno-functional properties of the resulting powder in particular in terms of instant reconstitution.
2

Contribution au développement d'un procédé pour la neutralisation du lactosérum électro-activé in situ du réacteur par un mode électrolytique

Allagui, Molka 24 September 2021 (has links)
L'électro-activation (EA) est une approche novatrice qui permet l'isomérisation du lactose en lactulose directement in situ du lactosérum. Cependant, le lactosérum électro-activé (LA-EA) possède un pH hautement alcalin. Alors, l'objectif de ce travail est de contribuer au développement d'un procédé électrolytique pour la neutralisation du LA-EA. La détermination de l'effet des paramètres opératoires et physico-chimiques du milieu électro-activé sur la formation du lactulose a montré qu'un rendement maximum en lactulose de 34,71% est obtenu en utilisant une solution de lactosérum d'une concentration de 7% et 60 min de temps d'électro-activation sous une intensité du courant de 1000 mA après un temps de relaxation de 48 h. Trois configurations électrolytiques ont été étudiées pour la neutralisation de la solution du lactosérum: (1) en neutralisant avec l'anolyte généré dans le compartiment anodique; (2) en inversant les deux électrodes (cathode et anode) et (3) en introduisant le LA-EA dans le compartiment central du réacteur. Les résultats ont montré la faisabilité du processus d'électro-neutralisation. En effet, le pH de la solution a diminué soit en ajoutant des ions H⁺ (cas des configurations 1 et 2), ou en éliminant les ions OH⁻ de la solution (cas de la configuration 3). De plus, il a été révélé que l'électro-neutralisation est ralentie lorsque (I) augmente pour les deux configurations 1 et 2, tandis que pour la configuration 3, elle est accélérée. Les résultats de l'évaluation de l'effet de ce processus sur les propriétés du LA-EA ont montré que la neutralisation de la solution après un temps de relaxation de 48 h n'a pas affecté la composition glucidique du LA-EA, notamment le lactulose. De plus, elle a permis d'améliorer les propriétés techno-fonctionnelles des poudres résultantes en particulier en termes de reconstitution instantanée. / Electro activation (EA) is a novel approach that allows the isomerization of lactose to lactulose in situ from whey. However, electro-activated whey (LA-EA) has a highly alkaline pH. Therefore, the objective of this work is to contribute to the development of an electrolytic process for the neutralization of LA-EA. The determination of the effect of physico-chemical parameters on the formation of lactulose showed that the maximum lactulose yield (34.71%) is obtained for a feed concentration of 7% at 60 min of electro-activation, under a current intensity of 1000 mA after a relaxation time of 48 h. Three electrolytic configurations were studied for neutralization of the whey solution: (1) neutralizing with the anolyte generated at the anode compartment; (2) reversing the two electrodes (cathode and anode) and (3) introducing LA-EA into the central compartment of the reactor. The results showed the feasibility of the electro-neutralization process. Indeed, the pH of the solution decreased either by adding H⁺ ions (case of configurations 1 and 2), or by removing OH⁻ ions from the solution (case of configuration 3). Furthermore, it was revealed that electro-neutralization is slowed down when (I) increases for both configurations 1 and 2, while for configuration 3, it is accelerated. The results of the evaluation of the effect of this process on the properties of LA-EA showed that the neutralization of the solution after a relaxation time of 48 h did not affect the carbohydrate composition of LA-EA, especially lactulose. Moreover, it improved the techno-functional properties of the resulting powder in particular in terms of instant reconstitution.
3

Modélisation des opérations du secteur électrolyse de l'aluminerie Alcoa Deschambault dans le but d'améliorer la productivité de l'aluminerie en situation d'augmentation d'ampérage

Veilleux, Valérie 24 April 2018 (has links)
Une bonne planification et un bon contrôle des opérations ayant lieu dans une aluminerie sont cruciaux pour atteindre un haut niveau de performance et de productivité dans l'usine. Compte tenu du grand nombre de processus impliqués dans le secteur de l’électrolyse, de leur complexité ainsi que de leurs interrelations, il est loin d'être trivial d'évaluer les impacts causés par un changement d’ampérage dans les cuves d’électrolyse sur la capacité opérationnelle de l’usine. Dans le présent travail, un modèle de simulation basé sur la méthode à événements discrets est développé pour analyser la gestion des opérations dans le secteur de l’électrolyse. Les entrées du modèle sont l’aménagement des installations, les horaires de travail, les temps de déplacements et de traitement, la disponibilité et la capacité des équipements tels que les creusets, les ponts roulants, etc., et la liste des cuves à traiter en fonction des demandes de la fonderie. Le modèle a été validé avec les données de l'usine. Les résultats de la simulation incluent des détails sur les opérations effectuées au cours d’une période de 12 heures, soit le temps d'un quart de travail et le moment où elles ont été complétées. La simulation fournit également des informations pertinentes telles que l'incapacité opérationnelle à respecter la planification. En se basant sur le contexte actuel de l’aluminerie Alcoa Deschambault, la recherche permet de démontrer qu'il est possible, avec les ressources actuelles, de soutenir des augmentations de 5% et 10% d’ampérage dans les cuves d’électrolyse. Les travaux contribuent de plus à démontrer la façon de déployer correctement des véhicules autoguidés pour le transport des anodes afin de bien répondre aux besoins de l’entreprise. Le modèle de simulation proposé dans ce mémoire peut donc être considéré comme un outil puissant d’aide à la décision pour tester différents scénarios et ainsi conduire à des décisions bénéfiques à court et à long terme. / A good planning and control of the operations involved in a smelter is crucial for achieving a high-level of performance and productivity for the plant. Given the large number of processes involved in a smelter, as well as their complexity and interrelationships, it is far from trivial to evaluate the real impact that a change to the cell amperage may have on work organization and schedules, equipment capacities and replacement, etc. In the present work, a simulation model based on the discrete event method is developed to analyze the operations management in a potroom. The inputs to the model are the plant layout, the work schedule, the travel and process times, the availability and the capacity of equipment such as crucibles, cranes, etc., and the list of required cells to be tapped, based on the cast house requirements. The model was validated with plant data. Results of the simulation include some details concerning the operations performed within a 12-hour period, a work shift duration, and the time at which they were completed. The simulation also provides information such as the operational incapacity to respect the planning when applicable. Based on the actual context of the Alcoa Deschambault’s smelter, the research demonstrates that it is possible, with current resources, to support an increase of 5% or 10% of amperage. Furthermore, it shows how auto-guided vehicles for the transport of the anodes could be implemented regarding the needs of the company. The proposed simulation model can therefore be viewed as a powerful tool to test different scenarios and lead towards profitable short-term and long-term planning decisions.
4

Étude des mécanismes de formation et du comportement des dépôts au pourtour de cellules d’électrolyse d’aluminium

Allard, François January 2014 (has links)
Le Canada est un joueur majeur dans l’industrie de l’aluminium. Pour demeurer compétitif mondialement, le coût de production de l’aluminium doit constamment être réduit. Les cellules d’électrolyse requièrent une grande quantité d’énergie (~13 kWh/kg) pour produire l’aluminium. De plus, l’efficacité du procédé Hall-Héroult est diminuée par la présence de dépôts à l’interface entre l’aluminium et le bloc cathodique. Ces dépôts causent une restriction pour le passage du courant engendrant une augmentation de la perte de potentiel. Les dépôts à la surface du bloc cathodique se divisent en différentes catégories. Il y a le pied de talus qui est situé sous le talus et sur le bloc cathodique. La partie du pied de talus près de la paroi de la cellule d’électrolyse possède une composition chimique similaire au talus. La partie à l’extrémité du pied de talus possède un ratio de cryolite plus élevé que le talus et elle est davantage sursaturée en alumine. L’extrémité du pied de talus peut atteindre jusqu’à 85 % d’Al[indice inférieur 2]O[indice inférieur 3]. Le pied de talus se forme par les pertes de chaleur situées au niveau de la paroi et au fond de la cellule. Il prend de l’expansion lorsque la température locale est inférieure à la température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] (944 °C à un ratio de cryolite de 2,5). Le ratio de cryolite de l’extrémité du pied de talus augmente puisqu’il y a migration des cations Na[indice supérieur +] vers la cathode. La boue est composée d’un mélange d’Al[indice inférieur 2]O[indice inférieur 3] solide en suspension dans le bain électrolytique liquide. Elle est située, en général, au centre de la cellule d’électrolyse et sur le bloc cathodique. De plus, un film de bain sursaturé en alumine peut se retrouver entre le pied de talus et la boue au centre. Le ratio de cryolite de la boue se situe entre 2,2 et 2,5 et la concentration d’Al[indice inférieur 2]O[indice inférieur 3] varie entre 20 % et 50 %. La température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] est fortement influencée par l’excès d’AlF[indice inférieur 3] et par la concentration en CaF[indice inférieur 2]. De plus, il y a présence d’une fraction liquide dans les dépôts dès 730 °C compte tenu de la présence de Na[indice inférieur 5]Al[indice inférieur 3]F[indice inférieur 14], Na[indice inférieur 2]Ca[indice inférieur 3]Al[indice inférieur 2]F[indice inférieur 14] et NaCaAlF[indice inférieur 6]. La fraction liquide augmente lorsque le ratio de cryolite diminue. Il y a évaporation de bain acide à partir d’environ 730 °C. Les dépôts dans la cellule d’électrolyse sont donc à l’état solide-liquide dès que la température atteint environ 730 °C.
5

Développement de catalyseurs pour un électrolyseur alcalin H2/O2 / Catalysts for H2/O2 producer device

Pătru, Alexandra 22 February 2013 (has links)
Le travail de thèse présenté dans ce mémoire, est consacré à l'étude des nouveaux matériaux d'électrodes pour l'électrolyse de l'eau en milieu alcalin. L'objectif de ces études est de développer de nouveaux électrocatalyseurs à base de métaux non nobles, capables d'améliorer les cinétiques de réactions intervenant dans la décomposition de l'eau : l'évolution de l'hydrogène (HER) et l'évolution de l'oxygène (OER). L'amélioration des performances catalytiques se traduit par une diminution des surtensions de réaction et donc de l'énergie nécessaire à la production de l'hydrogène. Pour cela, nous avons choisir de réaliser des électrodes à base de nanoparticules de nickel et de cobalt pour l'HER et de nanoparticules de cobaltites de cobalt, Co3O4, pour l'OER. La mise au point de plusieurs méthodes innovantes de formulation des électrodes (dépôt par électrophorèse « réactive » et électrodes composites à base liant organique fonctionnel) a permis la réduction des surtensions des réactions. Pour une densité de courant de 100 mA cm-2, une surtension cathodique de -286 mV est nécessaire avec les électrodes composites à base de nanoparticules de nickel, -238 mV pour une électrode en Co obtenue par électrophorèse et une surtension anodique 323 mV pour une électrode composite à base de nanoparticules de Co3O4. Une étude électrochimique approfondie de l'HER a été réalisée sur différentes morphologies de nanoparticules de nickel. / The PhD work, presented in this manuscript, is devoted to the study of new electrode materials for alkaline water electrolysis.The aim of this study is to develop new electrocatalysts based on non-noble metals. These catalysts are designed to improve the kinetics of the reactions involved in the water splitting: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The improvement of catalytic reaction results in the decrease of the overpotentials and therefore the saving of energy needed for hydrogen production. To do that, nickel and cobalt nanoparticles were used for HER, and Co3O4 nanoparticles for OER. The development of several innovative methods for electrode formulation (deposition by electrophoresis and composites electrodes based on a functional organic binder) reduced the overpotential reactions. For a current density of 100 mA cm-2, -286 mV of cathodic overpotential is needed for composites electrodes based on nickel nanoparticles, -238 mV for a Co-based electrode made by electrophoresis and 323 mV of anodic overpotential for a Co3O4 -based composite electrode. A detailed electrochemical study was made for HER on various morphologies of nickel nanoparticles.
6

Étude de phénomènes chimiques au contact entre le bloc cathodique et la barre collectrice d'une cellule d'électrolyse d'aluminium

Lebeuf, Martin January 2012 (has links)
La production d'aluminium est une industrie importante au Québec. Les propriétés de ce métal le vouent à de multiples usages présents et futurs dans le cadre d'une économie moderne durable. Toutefois, le procédé Hall-Héroult est très énergivore et des progrès demeurent donc nécessaires pour en diminuer les coûts financiers et environnementaux. Parmi les améliorations envisageables de la cellule d'électrolyse se trouve le contact entre la cathode et la barre collectrice, qui doit offrir une faible résistivité au passage du courant électrique. En cours d'opération de la cellule, ce contact a tendance à se dégrader, générant des pertes énergétiques significatives. Les causes de cette dégradation, pouvant provenir de phénomènes chimiques, thermiques, mécaniques et/ou électriques, demeurent mal comprises. Le but du présent projet était donc d'étudier les phénomènes chimiques se produisant au contact bloc-barre de la cellule d'électrolyse Hall-Héroult. En premier lieu, un aspect crucial à considérer est la pénétration du bain électrolytique dans la cathode, car des composés de bain atteignent éventuellement la barre collectrice et peuvent y réagir. À cet effet, une méthode novatrice a été développée afin d'étudier les cathodes et la pénétration du bain dans celles-ci à l'aide de la microtomographie à rayons X. Cette méthode rapide et efficace s'est avérée fort utile dans le projet et à un potentiel important pour l'étude future des cathodes et des phénomènes qui s'y produisent. Ensuite, une cellule d'électrolyse rectangulaire à petite échelle a été développée. Plusieurs phénomènes observés en industrie sur des autopsies de cellules post-opération et rapportés dans la littérature ont été reproduis avec succès à l'aide de cette cellule expérimentale. Puis, des tests sans électrolyse, ciblant l'effet du bain électrolytique sur l'acier, ont aussi été conçus et complétés afin de ségréger l'influence des différents paramètres en jeu. L'analyse des résultats de l'ensemble de ces tests a permis de constater différents phénomènes au contact bloc-barre, dont la présence systématique de NaF et, surtout, de béta-Al[indice inférieur 2]O[indice inférieur 3]. Outre la carburation inévitable de la barre collectrice, la formation d'une couche Fe-Al a aussi été observée, favorisée par une pénétration rapide du bain électrolytique dans la cathode ainsi que par une composition de bain acide en surface de la barre. Cette couche comportait par ailleurs des cristaux de béta-Al[indice inférieur 2]O[indice inférieur 3] pouvant nuire à sa conductivité électrique. Ensuite, à des ratios de bain entre 2.5 et 4.9, une mince couche contenant les éléments Al et N peut se former en surface de la barre. Pour un bain tres basique (> 6.0), c'est plutôt une couche Na [indice inférieur 2] O qui a été observée. En conditions d'électrolyse mais sans une pénétration rapide du bain dans la cathode, du Na a pu carrément pénétrer dans la barre collectrice, préférentiellement avec le carbone. De plus, de la corrosion ainsi que des couches de fer et d'oxyde de fer peuvent se former sur la barre et potentiellement dégrader la qualité du contact électrique. \Pour la suite des travaux, des mesures de résistivité ainsi que l'analyse des échantillons industriels permettraient d'évaluer l'impact de ces phénomènes sur la qualité du contact.
7

Étude des mécanismes de formation et du comportement des dépôts au pourtour de cellules d’électrolyse d’aluminium

Allard, François January 2014 (has links)
Le Canada est un joueur majeur dans l’industrie de l’aluminium. Pour demeurer compétitif mondialement, le coût de production de l’aluminium doit constamment être réduit. Les cellules d’électrolyse requièrent une grande quantité d’énergie (~13 kWh/kg) pour produire l’aluminium. De plus, l’efficacité du procédé Hall-Héroult est diminuée par la présence de dépôts à l’interface entre l’aluminium et le bloc cathodique. Ces dépôts causent une restriction pour le passage du courant engendrant une augmentation de la perte de potentiel. Les dépôts à la surface du bloc cathodique se divisent en différentes catégories. Il y a le pied de talus qui est situé sous le talus et sur le bloc cathodique. La partie du pied de talus près de la paroi de la cellule d’électrolyse possède une composition chimique similaire au talus. La partie à l’extrémité du pied de talus possède un ratio de cryolite plus élevé que le talus et elle est davantage sursaturée en alumine. L’extrémité du pied de talus peut atteindre jusqu’à 85 % d’Al[indice inférieur 2]O[indice inférieur 3]. Le pied de talus se forme par les pertes de chaleur situées au niveau de la paroi et au fond de la cellule. Il prend de l’expansion lorsque la température locale est inférieure à la température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] (944 °C à un ratio de cryolite de 2,5). Le ratio de cryolite de l’extrémité du pied de talus augmente puisqu’il y a migration des cations Na[indice supérieur +] vers la cathode. La boue est composée d’un mélange d’Al[indice inférieur 2]O[indice inférieur 3] solide en suspension dans le bain électrolytique liquide. Elle est située, en général, au centre de la cellule d’électrolyse et sur le bloc cathodique. De plus, un film de bain sursaturé en alumine peut se retrouver entre le pied de talus et la boue au centre. Le ratio de cryolite de la boue se situe entre 2,2 et 2,5 et la concentration d’Al[indice inférieur 2]O[indice inférieur 3] varie entre 20 % et 50 %. La température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] est fortement influencée par l’excès d’AlF[indice inférieur 3] et par la concentration en CaF[indice inférieur 2]. De plus, il y a présence d’une fraction liquide dans les dépôts dès 730 °C compte tenu de la présence de Na[indice inférieur 5]Al[indice inférieur 3]F[indice inférieur 14], Na[indice inférieur 2]Ca[indice inférieur 3]Al[indice inférieur 2]F[indice inférieur 14] et NaCaAlF[indice inférieur 6]. La fraction liquide augmente lorsque le ratio de cryolite diminue. Il y a évaporation de bain acide à partir d’environ 730 °C. Les dépôts dans la cellule d’électrolyse sont donc à l’état solide-liquide dès que la température atteint environ 730 °C.
8

A bio-coke for anode production and the manufacturing method thereof

Hussein, Asem 24 April 2018 (has links)
Dans l’industrie de l’aluminium, le coke de pétrole calciné est considéré comme étant le composant principal de l’anode. Une diminution dans la qualité du coke de pétrole a été observée suite à une augmentation de sa concentration en impuretés. Cela est très important pour les alumineries car ces impuretés, en plus d’avoir un effet réducteur sur la performance des anodes, contaminent le métal produit. Le coke de pétrole est aussi une source de carbone fossile et, durant sa consommation, lors du processus d’électrolyse, il y a production de CO2. Ce dernier est considéré comme un gaz à effet de serre et il est bien connu pour son rôle dans le réchauffement planétaire et aussi dans les changements climatiques. Le charbon de bois est disponible et est produit mondialement en grande quantité. Il pourrait être une alternative attrayante pour le coke de pétrole dans la fabrication des anodes de carbone utilisées dans les cuves d’électrolyse pour la production de l’aluminium. Toutefois, puisqu’il ne répond pas aux critères de fabrication des anodes, son utilisation représente donc un grand défi. En effet, ses principaux désavantages connus sont sa grande porosité, sa structure désordonnée et son haut taux de minéraux. De plus, sa densité et sa conductivité électrique ont été rapportées comme étant inférieures à celles du coke de pétrole. L’objectif de ce travail est d’explorer l’effet du traitement de chaleur sur les propriétés du charbon de bois et cela, dans le but de trouver celles qui s’approchent le plus des spécifications requises pour la production des anodes. L’évolution de la structure du charbon de bois calciné à haute température a été suivie à l’aide de différentes techniques. La réduction de son contenu en minéraux a été obtenue suite à des traitements avec de l’acide chlorhydrique utilisé à différentes concentrations. Finalement, différentes combinaisons de ces deux traitements, calcination et lixiviation, ont été essayées dans le but de trouver les meilleures conditions de traitement. / In aluminum industry, calcined petroleum coke is considered as the major component in anode recipe. There is a trend of degrading quality of petroleum coke as the level of impurities is increasing. This is important for the aluminum industry because these impurities reduce the anode performance and contaminate the produced metal. In addition, petroleum coke is a fossil source of carbon and CO2, produced during its consumption in aluminum electrolysis is considered as a greenhouse gas (GHG) with a well-known role in the global warming and climate changes. Due to its availability and massive worldwide production, wood charcoal is an attractive alternative for petroleum coke in production of carbon anode for aluminum smelting process. However, using charcoal in anode production is a big challenge since it does not meet the specifications required for anode making. The very porous and disordered carbon structure and its relatively high minerals content are considered as serious disadvantages. In addition, its density and electrical conductivity were reported to be lower than those of petroleum coke. This work explores the effect of heat treatment on properties of charcoal with the aim to bring them closer to the specifications required for anode making. At high temperature, the structural evolution of charcoal was detected using several techniques. In addition, various acid leaching conditions were used to reduce the ash content. Different calcination/acid leaching combinations were performed to attain the optimum treatment condition. The materials were then characterized for air and CO2 reactivity in order to assess their potential application in anode manufacturing.
9

Multivariate monitoring of individual anode current signals for anodic incident detection

Lajambe, David 05 March 2020 (has links)
L’aluminium est produit industriellement grâce à l’électrolyse. Ce procédé a lieu dans une cuve d’électrolyse et il consiste à injecter un courant électrique pour transformer l’oxyde d’aluminium en aluminium métallique et en dioxyde de carbone. Les anodes permettent le passage du courant à travers la cuve et fournissent également le carbone nécessaire pour la réaction électrolytique. Un incident anodique se produit lorsqu’une déformation se développe sur la surface inférieure d’une anode ou lorsque l’anode est placée trop basse dans la cuve, ce qui cause un court-circuit partiel à la position de l’anode affectée. Les incidents anodiques ont un impact négatif sur l’efficacité du courant de la cuve. La détection et la correction hâtives des incidents anodiques sont donc avantageuses d’un point de vue économique. L’objectif de cette étude est de concevoir un système qui est capable de détecter les incidents anodiques en temps réel, et ce plus rapidement que la technique standard actuelle. Pour ce faire, l’Analyse en Composantes Principales a été utilisée pour entraîner des modèles prédictifs développés à partir des signaux individuels de courant d’anodes et du signal de voltage de la cuve, dans le but de classifier les anodes selon l’erreur de prédiction au carré et la statistique T2 de Hotelling. Cette stratégie semble permettre de détecter des incidents anodiques grâce aux signaux individuels de courant. Toutefois, ce n’est pas le cas avec le signal de voltage de la cuve. La surveillance de la moyenne ou l’écart-type des signaux de courant à haute fréquence à l’aide d’un modèle de régression logistique semble aussi faciliter la détection des incidents anodiques. / Aluminum metal is produced industrially in electrolysis cells, in which an electric current is used to transform aluminum oxide into metallic aluminum and carbon dioxide. Anodes are used to carry the current across the electrolysis cells and provide the carbon source necessary to drive the electrolytic reaction forward. Anodic incidents occur when an anode develops a spike or other deformation on its bottom surface or when the anode is set too low in the cell, causing the electrolysis cell to partially short circuit at the affected anode position. Anodic incidents have a deleterious effect on the cell’s current efficiency, making early detection and correction of anodic incidents economically advanta-geous. The objective of this study is to develop a real-time anodic incident detection system capableof identifying problematic anodes faster than the standard contemporary technique. Principal Component Analysis models were trained with individual anode current signals and cell voltage signals, and were subsequently used to classify anodes according to the squared prediction error and Hotelling’sT2 statistic. This strategy appears to enable anodic incident detection with individual anode current signals, but not with the cell voltage signal. Monitoring the signal mean and standard deviation of high-frequency anode current signals with a logistic regression model also appears to facilitate anod icincident detection.
10

Étude de l'effet de la pression sur l'électrolyse de H2O et la co-électrolyse de H2O et CO2 à haute température / Study of the effect of pressure on electrolysis of H2O and co-electrolysis of H2O and CO2 at high temperature

Bernadet, Lucile 28 November 2016 (has links)
Ces travaux de thèse portent sur l’étude du comportement sous pression d’une cellule à oxydes solides fonctionnant à haute température en mode électrolyse de H2O et en mode co-électrolyse de H2O et CO2. Une étude expérimentale sur mono-cellule associée au développement de modèles multi-physiques a été mise en place. Les essais, réalisés à partir d’une installation unique présente au CEA-Grenoble, sur deux types de cellules entre 1 et 10 bar et de 700 à 800 °C, ont permis d’identifier dans les deux modes de fonctionnement, que la pression a un effet positif ou négatif sur les performances selon le point de fonctionnement (courant, tension) de la cellule. De plus, des analyses de gaz conduites en mode co-électrolyse ont permis de détecter une production de CH4 in-situ sous pression. Ces effets de la pression ont été correctement simulés par les modèles calibrés à pression atmosphérique. L’analyse des simulations a ensuite permis l’identification des mécanismes impactés par la pression et la proposition de conditions opératoires de fonctionnement grâce à l’établissement de cartographies de fonctionnement. / This thesis work investigates the behavior of a solid oxide cell operating under pressure in high temperature steam electrolysis and co-electrolysis mode (H2O and CO2). The experimental study of single cell associated with the development of multi-physical models have been set up. The experiments, carried out using an original test bench developed by the CEA-Grenoble on two types of cells between 1 and 10 bar and 700 to 800 °C, allowed to identify in both operating modes that the pressure has a positive or negative effect on performance depending on the cell operating point (current, voltage). In addition, gas analyzes performed in co-electrolysis led to detect in situ CH4 production under pressure. These pressure effects were simulated by models calibrated at atmospheric pressure. Simulations analysis helped identify the pressure dependent mechanisms and propose operating conditions thanks to the establishment of operating maps.

Page generated in 0.4517 seconds