Return to search

Modeling and Design of Modular Multilevel Converters for Grid Applications

This thesis aims to bring clarity to the dimensioning aspects and limiting factors of the modular multilevel converter (MMC). Special consideration is given to the dc capacitors in the submodules as they are a driving factor for the size and weight of the converter. It is found that if the capacitor voltages are allowed to increase by 10% the stored energy must be 21 kJ/MW in order to compensate the capacitor voltage ripple. The maximum possible output power can, however, be increased by injecting a second-order harmonic in the circulating current. A great advantage of cascaded converters is the possibility to achieve excellent harmonic performance at low switching frequencies. Therefore, this thesis also considers the relation between switching harmonics, capacitor voltage ripple, and arm quantities. It is shown that despite subharmonics in the capacitor voltages, it is still possible to achieve periodic arm quantities. The balancing of the capacitor voltages is also considered in further detail. It is found that it is possible to balance the capacitor voltages even at fundamental switching frequency although this will lead to a comparably large capacitor voltage ripple. Therefore, in order to limit the peak-to-peak voltage ripple, it is shown that a predictive algorithm can be used in which the resulting switching frequency is approximately 2–3 times the fundamental frequency. This thesis also presents two new submodule concepts. The first submodule simply improves the trade-off between the switching frequency and capacitor voltage balancing. The second submodule includes the possibility to insert negative voltages which allows higher modulation indices compared to half-bridge submodules. A brief comparison of cascaded converters for ac-ac applications is also presented. It is concluded that the MMC appears to be well suited for ac-ac applications where input and output frequencies are close or equal, such as in interconnection of ac grids. In low-frequency applications such as low-speed drives, however, the difficulties with handling the energy variations in the converter arms are much more severe in the MMC compared to the other considered topologies. / <p>QC 20141010</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-153762
Date January 2014
CreatorsIlves, Kalle
PublisherKTH, Elektrisk energiomvandling, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EE, 1653-5146 ; 2014:045

Page generated in 0.0023 seconds