Molecular models allow computer simulations to predict the microscopic properties of macroscopic systems. Molecular modeling can also provide a fully understood test system for the application of theoretical methods. The power of a model lies in the accuracy of the parameter values which govern its mathematical behavior. In this work, a new software, called ParOpt, for general high dimensional non-linear optimization will be presented. The software provides a very general framework for the optimization of a wide variety of parameter sets. The software is especially powerful when applied to the difficult task of molecular model parameter optimization. Three applications of the ParOpt software, and the Nelder-Mead algorithm implemented within it, are presented: a coarse-grained (CG) water--ion model, a model for the determination of lipid bilayer structure via the interpretation of scattering data, and a reactive molecular dynamics (ReaxFF) model for oxygen and hydrogen. Each problem presents specific difficulties. The power and generality of the ParOpt software is illustrated by the successful optimization of such a diverse set of problems.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-6813 |
Date | 20 November 2014 |
Creators | Fogarty, Joseph C. |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Rights | default |
Page generated in 0.0021 seconds