The field of organic semiconductors considerably gained research interest due to promising applications in flexible, large-area, lightweight and semitransparent electronic devices, such as light-emitting diodes, solar cells, or transistors. The working mechanism of such devices depends on the combination of different neat or blended organic films, whose physical properties substantially differ from those of inorganic semiconductors. Weak intermolecular electronic coupling and large energetic disorder result in a thermally activated charge carrier hopping between localized electronic states. Therefore, many processes in organic devices are determined by properties of single molecules. The major goal of this thesis is to disclose relationships between electronic properties of organic thin films and molecular parameters, helping to provide specific design rules for new molecules.
In the first part of this thesis, the impact of molecular quadrupole moments on the transport energies of charge carriers is investigated by photoelectron spectroscopy. The results reveal for a variety of planar small molecules that charge-quadrupole interactions along the pi-pi-stacking geometry induce large energy changes with molecular orientation at surfaces and interfaces of crystalline films. Furthermore, these electrostatic interactions enable a continuous tuning of energy levels in crystalline intermixed blends by more than 1 eV. In blends exhibiting separated phases, quadrupole moments induce electrostatic gradients from the interface to the bulk phase. These two effects are exploited in organic solar cells consisting of a ternary blend of two intermixed donors blended with one acceptor. By changing the mixing ratio of the two donors, the open-circuit voltage can be continuously tuned. Additionally, the dissociation barrier of electron-hole pairs at the interface can be varied, reflecting in a change in photocurrent.
In the second part, molecular n-doping is investigated, facing the particular issue of air sensitivity. The analysis of two air stable precursor molecules of n-dopants reveals very good doping properties after their thermal evaporation, partly even better than for a reference air sensitive dopant. For high doping concentrations, temperature-dependent conductivity measurements show that the thermal activation energy of many compounds can be described by an empirical function of two molecular parameters, the relaxation energy of matrix anions and the Coulomb binding energy of integer charge transfer complexes (ICTCs) between matrix anions and dopant cations. The investigation of the density of states indicates that charge transport at high doping concentrations predominantly occurs by a rearrangement between different ICTC configurations and is limited by their energetic disorder, which can be reduced substantially by adding electron withdrawing side groups to the matrix molecules. The exposure of several n-doped semiconductors to air reveals that the air stability increases with larger ionization energies of ICTCs. This effect is attributed to an universal trap introduced upon air exposure. Its energy is estimated to be 3.9 eV, setting a general limit for air stable n-doping. / Organische Halbleiter bieten vielversprechende Anwendungsmöglichkeiten in ultraleichten, flexiblen, großflächigen und semitransparenten elektronischen Bauteilen wie beispielsweise in Leuchtdioden, Solarzellen oder Transistoren. Die Funktionsweise solcher Bauteile basiert auf der Kombination verschiedener organischer Moleküle in dünnen Schichten, deren physikalische Eigenschaften sich stark von herkömmlichen anorganischen Halbleitern unterscheiden. Die schwache elektronische Kopplung zwischen einzelnen Molekülen und die große energetische Unordnung in organischen Halbleitern bewirken einen temperaturaktivierten Transport von Ladungsträgern zwischen lokalisierten elektronischen Zuständen. Daher werden viele Prozesse in organischen Halbleiterbauelementen von molekularen Eigenschaften bestimmt. Das Hauptziel dieser Dissertation ist es, verschiedene elektronische Eigenschaften dünner organischer Filme mit molekularen Parametern in Verbindung zu bringen, was als Grundlage für die gezielte Entwicklung neuer Moleküle dienen soll.
Im ersten Teil dieser Arbeit wird mittels Photoelektronenspektroskopie der Einfluss molekularer Quadrupolmomente auf die Transportenergien von Ladungsträgern untersucht. Für eine große Anzahl verschiedener planarer Moleküle zeigt sich, dass die Wechselwirkung von Ladungen mit Quadrupolmomenten entlang der pi-pi-Stapelrichtung große Veränderungen der Energieniveaus an der Oberfläche und der Grenzfläche von kristallinen Filmen bewirkt, beispielsweise wenn sich die Molekülorientierung ändert. Dieser elektrostatische Effekt ermöglicht es, die Energieniveaus in einer homogen durchmischten Schicht zweier Molekülarten kontinuierlich über eine Größenordnung von mehr als 1 eV durchzustimmen. In Mischungen mit einer Phasentrennung können molekulare Quadrupolmomente einen elektrostatischen Gradienten an der Grenzfläche zwischen den Phasen ausbilden. Diese beiden Effekte werden in Solarzellen ausgenutzt, die aus einer Mischung von zwei Donatormolekülen und einem Akzeptormolekül bestehen. Durch Variation des Mischverhältnisses der zwei Donatoren lässt sich die Leerlaufspannung kontunierlich anpassen. Zusätzlich lässt sich die Energiebarriere für die Ladungsträgertrennung an der Grenzfläche reduzieren, was zu einem höheren Photostrom führt.
Im zweiten Teil wird molekulare n-Dotierung untersucht, bei der das spezielle Problem der Luftsensitivität berücksichtigt werden muss. Zwei luftstabile Ausgangsmoleküle von n-Dotanden weisen nach ihrer thermischen Verdampfung sehr gute Dotiereigenschaften auf, welche für ein Molekül sogar besser als bei entsprechenden luftsensitiven Referenzdotanden sind. Temperaturabhängige Leitfähigkeitsmessungen zeigen, dass die thermische Aktivierungsenergie bei hohen Dotierkonzentrationen durch eine empirische Funktion von zwei molekularen Parametern beschrieben werden kann, welche die Relaxationsenergie von Anionen des Matrixmoleküls und die Coulombbindungsenergie des Ionenpaars aus Matrix- und Dotandenmolekül sind. Die Untersuchung der Zustandsdichte dieser hochdotierten Halbleiter deutet darauf hin, dass sich der Ladungstransport durch eine Umbesetzung dieser Ionenpaare beschreiben lässt. Der Transport ist dabei durch die energetische Unordnung der Ionenpaare limitiert, welche sich allerdings durch das Hinzufügen von elektronenziehenden Seitengruppen an die Matrixmoleküle deutlich reduzieren lässt. Der Kontakt verschiedener n-dotierter Halbleiter mit Luft zeigt, dass sich die Luftstabilität dieser mit größerer Ionisationsenergie der Anionen des Matrixmaterials verbessert. Diese Beobachtung wird dadurch erklärt, dass durch den Kontakt mit Luft ein universeller Fallenzustand mit der Energie von 3.9 eV entsteht. Dieser setzt eine allgemeine Grenze für luftstabile n-Dotierung.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:33668 |
Date | 28 March 2019 |
Creators | Schwarze, Martin |
Contributors | Leo, Karl, von Hauff, Elizabeth, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds