Return to search

Development of Auto-Immolative Spacers for Probes of Enzyme Activity

This thesis concerns the design and implementation of novel auto-immolative spacers for use in probes for enzymatic activity in vivo.The first part relates the development and in vitro validation of cyclisation spacers which couple the action of an aminopeptidase to the release of a phenol. The modular three-component fluorogenic probes based on these 1,2-diamine spacers are very robust (halflife > 560 h), but are also rapidly enzymatically processed, and quickly (halftime ~3 min) release an exceptionally photostable, insoluble ESIPT fluorophore. The probes have excellent detection sensitivity relative to current methods (signal to control ratio > 3000:1), and provide the first demonstration of a macroscopically binary off-ON system for phenol-releasing probes of aminopeptidase activity. The probe system may allow the exceptionally sensitive, ESIPT-based molecular imaging of a range of exopeptidases. The spacers may also be applied in off ON peptidase probes of other phenolic fluorophores, to peptidase-specific phenol/alcohol prodrugs for targeted therapy, or more generally in chemical adapter technologies.In the second part, two novel families of auto-immolative elimination/tautomerisation spacers were designed for use in three-component off ON magnetogenic probes sensing glycosidase activity. The first known substrate-spacer designs based on 2-hydroxyfurans and on carbimidates were explored. Notably, 2 furanol glycosides were synthesised in pursuit of high-energy alternatives to quinone methides, and a general method for preparing model carbimidate-bearing ligands for pro-magnetic probes was elaborated.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00998380
Date27 June 2013
CreatorsThörn Seshold, Oliver
PublisherEcole normale supérieure de lyon - ENS LYON
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0139 seconds