Return to search

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research.

Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets.

The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail.

The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden.

Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet.

Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen.

Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht.

Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25884
Date16 December 2011
CreatorsSchlesinger, Martin
ContributorsStrunz, Walter, Engel, Volker, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds