Return to search

Teoria-K no estable per a anells de multiplicadors

En esta Tesis damos una descripción del monoide V(M(A)) de clases de equivalencia de idempotentes/proyecciones de anillos de multiplicadores M(A), en el sentido de Murray-Von Neumann. Esta correspondencia se aplica principalmente a anillos de multiplicadores de anillos regulares simples y a una clase amplia de C*-álgebras simples con rango real cero y rango estable uno. Con esta descripción analizamos el reticulo de ideales del monoide V(M(A)), que por otro lado es un ingrediente crucial para entender la estructura de ideales del correspondiente anillo de multiplicadores. En casos importantes, demostramos que si A tiene escala finita, entonces el cociente de M(A) por cualquier ideal cerrado I que contiene propiamente a A, tiene rango estable uno. La extraordinaria complicación que presenta el retículo de ideales de M(A) se ve reflejada en el hecho que M(A) puede tener una cantidad no numerable de cocientes distintos. La metodologia desarrollada se aplica para el estudio de la riqueza de extremos en C*-álgebras. En particular, demostramos que el espacio de quasitrazas y la escala contienen suficiente información para decidir si M(A)/A tiene riqueza de extremos, lo que ocurre si la escala es finita. Si la escala no es finita, necesitamos condiciones más restrictivas.

Identiferoai:union.ndltd.org:TDX_UAB/oai:www.tdx.cat:10803/3102
Date01 May 1998
CreatorsPerera Domènech, Francesc
ContributorsAra i Bertrán, Pere, Universitat Autònoma de Barcelona. Departament de Matemàtiques
PublisherUniversitat Autònoma de Barcelona
Source SetsUniversitat Autònoma de Barcelona
LanguageCatalan
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0022 seconds