Return to search

Exploring the effects of state-action space complexity on training time for AlphaZero agents / Undersökning av påverkan av spelkomplexitet på träningstiden för AlphaZero-agenter

DeepMind’s development of AlphaGo took the world by storm in 2016 when it became the first computer program to defeat a world champion at the game of Go. Through further development, DeepMind showed that the underlying algorithm could be made more general, and applied to a large set of problems. This thesis will focus on the AlphaZero algorithm and what parameters affect the rate at which an agent is able to learn through self-play. We investigated the effect that the neural network size has on the agent’s learning as well as how the environment complexity affects the agent’s learning. We used Connect4 as the environment for our agents, and by varying the width of the board we were able to simulate environments with different complexities. For each board width, we trained an AlphaZero agent and tracked the rate at which it improved. While we were unable to find a clear correlation between the complexity of the environment and the rate at which the agent improves, we found that a larger neural network both improved the final performance of the agent as well as the rate at which it learns. Along with this, we also studied what impact the number of MonteCarlo tree search iterations have on an already trained AlphaZero agent. Unsurprisingly, we found that a higher number of iterations led to an improved performance. However, the difference between using only the priors of the neural network and a series of Monte-Carlo tree search iterations is not very large. This suggest that using solely the priors can sometimes be useful if inferences need to made quickly. / DeepMinds utveckling av AlphaGo blev ett stort framsteg året 2016 då det blev första datorprogrammet att besegra världsmästaren i Go. Med utvecklingen av AlphaZero visade DeepMind att en mer generell algoritm kunde användas för att lösa en större mängd problem. Den här rapporten kommer att fokusera på AlphaZero-algoritmen och hur olika parametrar påverkar träningen. Vi undersökte påverkan av neuronnätets storlek och spelkomplexiteten på agentens förmåga att förbättra sig. Med hjälp av 4 i rad som testningsmiljö för våra agenter, och genom att ändra på bredden på spelbrädet kunde vi simulera olika komplexa spel. För varje bredd som vi testade, tränade vi en AlphaZero-agent och mätte dens förbättring. Vi kunde inte hitta någon tydlig korrelation mellan spelets komplexitet och agentens förmåga att lära sig. Däremot visade vi att ett större neuronnät leder till att agenten förbättrar sig mer, och dessutom lär sig snabbare. Vi studerade även påverkan av att variera antalet trädsökningar för en färdigtränad agent. Våra experiment visar på att det finns en korrelation mellan agentens spelstyrka och antalet trädsökningar, där fler trädsökningar innebär en förbättrad förmåga att spela spelet. Skillnaden som antalet trädsökningar gör visade sig däremot inte vara så stor som förväntad. Detta visar på att man kan spara tid under inferensfasen genom att sänka antalet trädsökningar, med en minimal bestraffning i prestanda.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-320963
Date January 2022
CreatorsGlimmerfors, Tobias
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:543

Page generated in 0.0025 seconds