Dans les technologies d'aujourd'hui, l’épitaxie est une technique indispensable pour la fabrication des composants. Avec la diminution continue de la taille des transistors les objets epitaxiés rétrécissent aussi. Par conséquence, des effets morphologiques qui sont négligeables à grande échelle, doivent être considéré dans les petits motifs, et de plus des anisotropies doivent être prises en compte. C'est pour cela que cette thèse est consacrée à l'étude de la morphologie en fonction de la taille et de l'orientation des motifs. La caractérisation de la morphologie du SiGe comme déposé sur des motifs orientés selon <100> et <110> nous conduit à introduire de nouveaux effets de charge, pas encore reportés dans la littérature. Après avoir étudié en profondeur la morphologie après croissance, les épitaxies sont soumises à des températures légèrement supérieures à celle de dépôt, et les changements sont discutés en fonction de l'orientation et de la largeur des lignes. Des recuits sous H2 à des températures plus élevées sont réalisés sur des motifs différents ce qui permet l'observation des effets morphologiques en bord et en coin de motif. Ces effets dominent la morphologie globale des couches epitaxiées quand la taille des motifs diminue. En particulier, la stabilité des lignes de Si et SiGe lors des recuits est étudiée, ce qui permet de déterminer les facteurs importants pour la stabilité des lignes. Dans des expériences supplémentaires un procédé est développé pour augmenter la stabilité thermique des couches SiGe. En outre, l'épitaxie cyclique - nécessaire pour réaliser les sources/drains des CMOS avancés - est discutée. L'influence des changements dans l'étape de gravure d'un procédé cyclique de Si, en gardant l'étape de dépôt inchangée, est étudiée pour des motifs orientés selon <100>. Nous avons trouvé des conditions dans lesquelles la couche n'est plus continue. Des expériences pour étudier la gravure séparément permettent d'expliquer les phénomènes observés. / In current technology nodes, epitaxy is an indispensable technique in device fabrication. With the continuous decrease of the transistor size, the epitaxial objects shrink as well. As a consequence, morphology effects which can be neglected at the large scale, have to be considered in small patterns and in addition, anisotropies have to be taken into account. Therefore, this thesis is dedicated to morphology studies as a function of pattern size and orientation. The characterization of the SiGe morphology in the as-deposited state on <100> and <110> oriented patterns leads to the introduction of new loading effects, which have not been reported elsewhere so far. After having studied thoroughly the as-deposited morphology, the epitaxial layers are exposed to a temperature slightly higher than the deposition temperature and the changes are discussed as a function of line width and orientation. H2 annealing at higher temperatures are performed with various Si and SiGe patterns leading to the observation of morphology effects at the pattern edges and corners. These effects dominate the global layer appearance with decreasing pattern size. In particular, the stability of annealed Si and SiGe lines is studied which allows to determine the crucial factors for line stability. In additional experiments, a process is developed which can increase the thermal stability of epitaxial SiGe. Moreover, cyclic epitaxy - required for sources/drains of advanced CMOS devices - is discussed. The influence of changes in the etch step of a cyclic Si process, by keeping the deposition step unchanged, is studied for <100> oriented patterns. Conditions are found, where cyclic epitaxy results in a discontinuous layer. Experiments, which consider the etching separately can explain the observed phenomena.
Identifer | oai:union.ndltd.org:theses.fr/2013ISAL0152 |
Date | 19 December 2013 |
Creators | Seiss, Birgit |
Contributors | Lyon, INSA, Brémond, Georges |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds