Mosquitoes, by transmitting vector-borne diseases through their saliva, impact nearly half of the world's population. Mosquito survival is dependent on their sense of smell, or olfaction, which allows a mosquito to differentiate between plant nectar, required for metabolic processes, and host odors, which will help them navigate towards hosts, source of the blood required for producing eggs. Mosquitoes interpret and respond to chemical volatiles very differently depending on their environment (temperature, humidity, time of day, etc.) and species-specific host preferences (humans, mammals, etc.). However, the impact of ecological factors on mosquito prevalence, sugar-feeding, and host seeking is relatively unknown. In an attempt to address this knowledge gap, we first investigate how several ecological factors (i.e., temporal, seasonal, and topographical) affect mosquito sugar feeding and population dynamics. Second, we focused on the anthropophilic mosquito species Aedes aegypti to investigate the role of plant associated compounds in host-seeking behavior, such as those which are commonly found in personal care products (i.e., body washes). Our results demonstrate that several ecological factors alter mosquito prevalence and behavior, including both sugar and host seeking behaviors. We anticipate these results to be a starting point for mosquito control strategies that depend not only on olfactory perception of plant odors, but also on the ecological and species-specific characteristics which shape the dynamics of vector-borne diseases. / Master of Science in Life Sciences / Most female mosquitoes must feed on a blood source in order to produce eggs, but in doing this they can transmit viruses and pathogens between hosts through their saliva, which are contracted by 700,000 people per year. In order to survive and fly to locate these host sources, both female and male mosquitoes require sugar and carbohydrates present in plant nectar. Mosquito identification of nectar and blood sources is primarily dependent on their sense of smell, or olfaction, which allows a mosquito to identify and locate chemical odors. The interpretation of these chemical odors is context dependent on both the mosquitoes' hunger status, ideal host (human, mammal, bird, etc.) and environmental cues (temperature, humidity, time of day, etc.). It is relatively unknown how the combination of these biological and environmental factors influences mosquito survival and biting frequency. In order to better understand this relationship, we first investigated mosquito species' habitat preferences (i.e., urban and forested) and ecological factors (i.e., season, weather). Second, we focused on Aedes aegypti mosquitoes, which almost exclusively feed on humans in urban habitats, to investigate mosquito behavior in the presence of combined plant and human odors caused by the usage of fragrant personal care products that are scented with plant odors. Our results demonstrate that mosquito prevalence, host-seeking, and plant-seeking are highly dependent on chemical and ecological factors. We anticipate that this research has avenues for both improving mosquito control strategies and better understanding the ecological dynamics of vector-borne diseases.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/112701 |
Date | 03 June 2021 |
Creators | VanderGiessen, Morgen |
Contributors | Biochemistry, Vinauger, Clément, Lahondère, Chloé, Carlier, Paul R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds