Return to search

Muscle spindle responses following fatigue and ischemia

The purpose of this study was to determine whether ischemia would enhance muscle spindle responses to tendon tap and vibration during submaximal fatiguing contractions in the soleus muscle of able-bodied individuals. Nine healthy adults attended two experimental sessions approximately 48 hours apart. Both sessions were identical except that the fatigue task in one was performed with a pressure cuff placed above the knee and inflated to 180 mm Hg. Three 5s maximum voluntary contractions (MVCs) were performed prior to and after the fatigue task. Each participant held a target force of 20% MVC until endurance time (peak-to-peak tremor amplitude exceeded 5% MVC or target force dropped by 2% for 3s). Muscle spindle responses were evaluated using the peak-to-peak EMG amplitude of tendon taps (delivered by a custom-made tapper) and the Motor Unit Firing Rates (MUFR) during 15 s of vibration, recorded with fine-wire intramuscular electrodes. H reflex responses were measured before and after fatigue for each condition, to measure the net excitability of the spinal cord. There were no significant differences (p>0.05) in the P-P EMG of tendon taps or the MUFR across any conditions. The post-fatigue Maximal Voluntary Contraction forces were measured and were less than the pre-fatigue values under both conditions (and significantly different in the non-ischemic condition (p=0.01)). Absence of significant differences in the Hmax:Mmax ratios (p=0.94 in non-ischemic/fatigue and p=0.43 in ischemic condition) indicated that the spinal excitability was relatively unchanged across the conditions. Therefore, we could not conclude that ischemia enhanced the muscle spindle response. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-08-4229
Date27 February 2012
CreatorsShaikh, Tamanna Abdulhakim
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0021 seconds