Spelling suggestions: "subject:"nuscle spindle"" "subject:"1l1uscle spindle""
1 |
Intrafusal muscle fibre components of fusimotor functionDurbaba, Rade January 2001 (has links)
No description available.
|
2 |
Muscle spindle responses following fatigue and ischemiaShaikh, Tamanna Abdulhakim 27 February 2012 (has links)
The purpose of this study was to determine whether ischemia would enhance muscle spindle responses to tendon tap and vibration during submaximal fatiguing contractions in the soleus muscle of able-bodied individuals. Nine healthy adults attended two experimental sessions approximately 48 hours apart. Both sessions were identical except that the fatigue task in one was performed with a pressure cuff placed above the knee and inflated to 180 mm Hg. Three 5s maximum voluntary contractions (MVCs) were performed prior to and after the fatigue task. Each participant held a target force of 20% MVC until endurance time (peak-to-peak tremor amplitude exceeded 5% MVC or target force dropped by 2% for 3s). Muscle spindle responses were evaluated using the peak-to-peak EMG amplitude of tendon taps (delivered by a custom-made tapper) and the Motor Unit Firing Rates (MUFR) during 15 s of vibration, recorded with fine-wire intramuscular electrodes. H reflex responses were measured before and after fatigue for each condition, to measure the net excitability of the spinal cord. There were no significant differences (p>0.05) in the P-P EMG of tendon taps or the MUFR across any conditions. The post-fatigue Maximal Voluntary Contraction forces were measured and were less than the pre-fatigue values under both conditions (and significantly different in the non-ischemic condition (p=0.01)). Absence of significant differences in the Hmax:Mmax ratios (p=0.94 in non-ischemic/fatigue and p=0.43 in ischemic condition) indicated that the spinal excitability was relatively unchanged across the conditions. Therefore, we could not conclude that ischemia enhanced the muscle spindle response. / text
|
3 |
??-Dystroglycan is essential for the induction of Egr3, a transcription factor important in muscle spindle formationWilliams, Stacey 06 November 2014 (has links)
Muscle spindle fibers are specialized stretch receptors that allow the perception and coordination of limb movement. Differentiation of muscle spindles is initiated by signals derived from the in growing Ia sensory neurons during development. The sensory neuron secretes neuregulin which binds and signals through the ErbB receptors to initiate a signaling cascade. This cascade results in the expression of a specific repertoire of genes, one of which is the transcription factor Egr3, which is necessary in the development of muscle spindles.
Signaling occurs efficiently when the postsynaptic receptors are clustered into large aggregates in apposition to an innervating nerve. Using what is known about acetylcholine receptor clustering at neuromuscular junctions as a model, this study shows the importance of the basal lamina proteins agrin and laminin and their shared receptor ??-dystroglycan in aggregating ErbB receptors at sensory synapses. The study also shows that signaling through these receptors subsequently results in increased expression of Egr3, the transcription factor critical to muscle spindle fiber differentiation. Using an ??-dystroglycan silenced culture, it is shown that ??-dystroglycan is necessary to induce neuregulin, laminin and agrin induced Egr3. In these same myotube cultures there is also a reduced number of AChR-ErbB3 colocalized aggregates and this is not rescued with the addition of laminin. Taken together, these results suggest an essential role for basal lamina components and ??-dystroglycan, molecules that are crucial in acetylcholine receptor aggregation at neuromuscular junctions, in the induction of the transcription factor Egr3, a critical transcription factor involved in muscle spindle fiber differentiation.
|
4 |
Whole-Body Vibration and Its Effects on Electromechanical Delay and Vertical Jump PerformanceStevenson, Deja Lee 27 June 2005 (has links) (PDF)
The purpose of this study was to determine the effects of whole-body vibration on electromechanical delay and vertical jump performance. Twenty college aged subjects participated in 10 intervals of whole-body vibration (WBV) at a frequency of 26 Hz and amplitude of 5 mm. Each interval consisted of 60 s of WBV in a half-squat followed by 60 s of rest. After 5 intervals, subjects had 6 min of rest before the final 5 intervals. Each subject also participated in the control which included the same 10 intervals in a half-squat without the WBV. Tests were conducted to assess electromechanical delay (EMD) and vertical jump at baseline, during the 6 min rest period and immediately after the treatment and control. EMD was measured using tibial nerve stimulation and a force plate. EMD was recorded as the lag time between the initiation of gastrocnemeus stimulation and plantar flexion force production. Vertical jump was measured using a force plate and subjects' flight time. The factorial ANOVA results showed no differences between groups, the control and WBV treatment, for both EMD (F (2, 38) = 1.385, p = 0.263) and vertical jump (F (2, 38) = 0.040, p < 0.96). The WBV treatment protocol chosen had no effect on vertical jump. These results suggest that WBV, using this protocol, is not effective for acute vertical jump or EMD enhancement. Also, since there was no effect on EMD, this suggests that the WBV treatment did not enhance muscle spindle sensitivity.
|
5 |
There and back again : a stretch receptor's taleSuslak, Thomas James January 2015 (has links)
Mechanotransduction is fundamental to many sensory processes, including balance, hearing and motor co-ordination. However, for such an essential feature, the mechanism(s) that underlie it are poorly understood. The mechanotransducing stretch receptors that relay information on the tonicity and length of skeletal muscles have been well-defined, particularly at the gross anatomical level, in a wide variety of species, encompassing both vertebrates and invertebrates. To date, there exists a wealth of data describing them, anatomically, as well as good electrophysiological data from stretch receptors of some larger organisms. However, comparatively few studies have succeeded in identifying putative mechanotransducing molecules in such systems. Nonetheless, this class of sensory mechanotransducers perhaps offer the best means of identifying molecules that permit the stretch-sensitivity of such endings, revealing new information about the underlying mechanisms of stretch receptors, and mechanoreceptors more generally. However, a different approach is clearly needed; a theoretical approach, utilising mathematical modelling, offers a powerful means of pooling the current wealth of knowledge on the reported electrophysiological behaviour of muscle stretch receptors. This study, therefore, develops an extended theoretical model of a stretch receptor system in order to reproduce, in silico, the reported behaviour of both vertebrate and invertebrate stretch receptors, within the same modelling environment, thus enabling the first quantitative framework for comparing these data, and moreover, making predictions of the likely roles of specific molecular entities within a stretch receptor system. Subsequently, this study utilises a model in vivo system to test these theoretical predictions. The genetic toolbox of D. melanogaster offers a wide range of tools that are extremely suitable for identifying mechanotransducing molecules in stretch receptors. However, very little is currently known about such endings in this organism. This study, therefore, firstly characterises a putative stretch receptor organ in larval Drosophila, the dbd neuron, via a novel experimental approach. It is shown that this neuron exhibits known properties of stretch receptors, as previously observed in other, similar organs. Furthermore, these observations bear out the predictions of the mathematical model. Having defined the dbd neuron as a muscle stretch receptor, pharmacological and genetic assays in this system, combined with predictions from the mathematical model, identify a key role for the recently-discovered DmPiezo protein as an amiloride-sensitive, mechanically-gated sodium channel (MNaC) in dbd neurons, with TRPA1 also acting in this system in a supporting role. These data confirm the essential role of an MNaC in mechanosensory systems, but also supply important evidence that, whilst the electrophysiological mechanisms in stretch receptors are remarkably similar across taxa, different species likely employ various molecular mechanisms to achieve this.
|
6 |
Extra- and intrafusal muscle fibre type compositions of the human masseter at young age. : In perspective of growth and functional maturation of the jaw-face motor system.Österlund, Catharina January 2011 (has links)
Muscles control body posture and movement by extrafusal and intrafusal (muscle spindle) fibres. The purpose of this thesis was to provide insight into the muscular basis for human jaw function at young age. Extrafusal and intrafusal fibres in the young masseter, and for comparison young biceps, were examined for composition of fibre types and myosin heavy chain (MyHC) isoforms by means of morphological, enzyme-histochemical, biochemical and immuno-histochemical techniques. For evaluation of plasticity during life span the data for young muscles were compared with previous reported data for adult and elderly muscles. The results showed significant differences in extrafusal fibre types and MyHC expression between young masseter and young biceps and between young masseter and masseter in adults and elderly. Compared with young biceps, young masseter was more intricate in composition of extrafusal MyHC expression. Muscle spindles were larger and more frequent in the masseter than in the biceps. Masseter and biceps muscle spindles showed fundamental similarities but also marked differences in MyHC expression. The results suggest that the young masseter is specialized in fibre types already at young age and shows a unique fibre type growth pattern. Whereas masseter extrafusal fibres display marked plasticity in fibre types and MyHC isoforms during life span muscle spindles/intrafusal fibres are morphologically mature already at young age and precede extrafusal fibres in growth and maturation. Results showed similarities in intrafusal MyHC expression between young masseter and biceps, but also differences implying muscle specific proprioceptive control. Differences in fibre types and MyHC expression between young masseter and young biceps extrafusal fibres are proposed to reflect diverse evolutionary and developmental origins and accord with the masseter and biceps being separate allotypes of muscle.
|
7 |
Human muscle spindles : complex morphology and structural organisationLiu, Jing-Xia January 2004 (has links)
Muscle spindles are skeletal muscle mechanoreceptors that mediate the stretch reflex and provide axial and limb position information to the central nervous system. They have been proposed to play a major role in the pathophysiology of muscle pain. Knowledge about the normal human muscle spindles is needed in order to understand their role in muscle disease or dysfunction. The aim of this study was to investigate the fiber content and MyHC composition of the muscle spindles in the human biceps brachii (BB) and deep muscles of the neck (DN); to determine whether there are age-related changes in human muscle spindles with respect to structure and MyHC composition; to investigate the distribution of SERCA isoforms and to evaluate whether there is a coordinated expression of SERCA and MyHC isoforms in intrafusal fibers. The myosin heavy chain (MyHC) content correlates to contraction velocity and force and the sarcoplasmic reticulum Ca2+ ATPase (SERCA) is a major determinant of muscle fiber relaxation velocity. Muscle specimens obtained from young and old subjects were serially sectioned and the pattern of distribution of different proteins along the length of the intrafusal fibers was revealed by immunocytochemistry. The MyHC content of single muscle spindles was assessed with SDS-PAGE and immunoblots. There were clear differences between BB and DN with regard to the morphology and MyHC composition of muscle spindles. Virtually each muscle spindle in the BB, but not in the DN, had a unique allotment of numbers of bag1, bag2 and chain fibers. In DN, a number of muscle spindles lacked either bag1 or bag2 fibers. Four major MyHC isoforms (MyHCI, IIa, α-cardiac and intrafusal) were detected by SDS-PAGE. In both BB and DN, immunocytochemistry revealed co-expression of several MyHC isoforms in each intrafusal fiber and regional heterogeneity. Both nuclear bag1 and bag2 fibers contained slow tonic MyHC uniformly and MyHCI, α-cardiac, embryonic and fetal with regional variations. Nuclear chain fibers contained MyHCIIa, embryonic and fetal and in the BB also MyHCIIx. The total number of intrafusal fibers per spindle decreased significantly with aging, due to a significant reduction in the number of nuclear chain fibers. The patterns of MyHC expression were also affected by aging. The bag1 fibers predominantly contained both SERCA isoforms in the encapsulated region. The bag2 fibers were more heterogeneous in their SERCA composition and 16-27% of them lacked both isoforms. Chain fibers contained SERCA1. There was a poor correlation between the MyHC and SERCA isoforms in nuclear bag fibers, whereas a strong correlation existed between MyHCIIa and SERCA1 in the nuclear chain fibers. Human muscle spindles, each being unique, proved to be more complex than anticipated. The clear differences shown between the BB and DN muscle spindles suggest functional specialization in the control of movement among different human muscles. Aging apparently had profound effects on intrafusal fiber content and MyHC composition. The age-related changes in muscle spindle phenotype may reflect deterioration in sensory and motor innervation and are likely to have a detrimental impact on motor control in the elderly.
|
8 |
Pax3 expression in satellite cells of avian skeletal muscle spindles during normal development and with experimental muscle overloadKirkpatrick, Lisa J 21 September 2009
Pax3 protein is initially expressed in the dermomyotome of embryonic somites, which gives rise to skeletal muscle. Following myogenesis, Pax3 expression is mostly down-regulated and becomes restricted to a few satellite cells (SCs) of select mature muscles. SCs are activated to form new myonuclei during muscle hypertrophy, regeneration and repair. Intrafusal fibers of muscle spindles are thought to persist in a comparatively immature state as, unlike extrafusal fibers, they maintain small diameters, developmental myosins, Myf5 expression and high SC concentrations. This thesis tests the hypotheses that Pax3 expression is preferentially maintained in SCs of adult skeletal muscle spindles and can be augmented under conditions of SC activation. To study Pax3 through development, immunohistochemical techniques were used to identify SCs by their Pax7 expression, and analyze the proportion of SCs and myonuclei (MN) expressing Pax3 in chicken anterior latissimus dorsi (ALD) muscle excised at 9, 30, 62, and 145 days post-hatch. To induce SC activation, tenotomy was performed on the right ALD muscle of 138-day post-hatch chicks to induce compensatory hypertrophy of the ipsilateral synergistic posterior latissimus dorsi (PLD) muscle. The PLD was analyzed seven days after ALD tenotomy using similar immunohistochemical techniques. This is the first study to show Pax3 expressing SCs within intrafusal fibers of muscle spindles. This thesis demonstrates that throughout development there is a higher percentage of Pax3 expressing SCs within intrafusal fibers of muscle spindles than the surrounding extrafusal fibers that compose the bulk of the muscle. It is also revealed that the proportion of the SC population expressing Pax3 declines with age in both intrafusal and extrafusal fibers. Compensatory hypertrophy of the PLD resulted in a greater percentage of Pax3 expressing SCs in intrafusal and extrafusal fibers than under control conditions. The percentage of SCs expressing Pax3 after PLD overload was similar to that seen in young control muscle. The percentage of Pax3 expressing MN also increased after muscle overload to levels seen in young muscle. A disproportionate decrease in the proportion of SCs expressing Pax3 during development, and a disproportionate increase in the percentage of Pax3 positive SCs as a result of experimentally induced muscle hypertrophy, suggests that Pax3 expression in maturing muscle may be more than just a developmental vestige. Pax3 may be a factor in the activation and differentiation of SCs in maturing muscle.
|
9 |
Pax3 expression in satellite cells of avian skeletal muscle spindles during normal development and with experimental muscle overloadKirkpatrick, Lisa J 21 September 2009 (has links)
Pax3 protein is initially expressed in the dermomyotome of embryonic somites, which gives rise to skeletal muscle. Following myogenesis, Pax3 expression is mostly down-regulated and becomes restricted to a few satellite cells (SCs) of select mature muscles. SCs are activated to form new myonuclei during muscle hypertrophy, regeneration and repair. Intrafusal fibers of muscle spindles are thought to persist in a comparatively immature state as, unlike extrafusal fibers, they maintain small diameters, developmental myosins, Myf5 expression and high SC concentrations. This thesis tests the hypotheses that Pax3 expression is preferentially maintained in SCs of adult skeletal muscle spindles and can be augmented under conditions of SC activation. To study Pax3 through development, immunohistochemical techniques were used to identify SCs by their Pax7 expression, and analyze the proportion of SCs and myonuclei (MN) expressing Pax3 in chicken anterior latissimus dorsi (ALD) muscle excised at 9, 30, 62, and 145 days post-hatch. To induce SC activation, tenotomy was performed on the right ALD muscle of 138-day post-hatch chicks to induce compensatory hypertrophy of the ipsilateral synergistic posterior latissimus dorsi (PLD) muscle. The PLD was analyzed seven days after ALD tenotomy using similar immunohistochemical techniques. This is the first study to show Pax3 expressing SCs within intrafusal fibers of muscle spindles. This thesis demonstrates that throughout development there is a higher percentage of Pax3 expressing SCs within intrafusal fibers of muscle spindles than the surrounding extrafusal fibers that compose the bulk of the muscle. It is also revealed that the proportion of the SC population expressing Pax3 declines with age in both intrafusal and extrafusal fibers. Compensatory hypertrophy of the PLD resulted in a greater percentage of Pax3 expressing SCs in intrafusal and extrafusal fibers than under control conditions. The percentage of SCs expressing Pax3 after PLD overload was similar to that seen in young control muscle. The percentage of Pax3 expressing MN also increased after muscle overload to levels seen in young muscle. A disproportionate decrease in the proportion of SCs expressing Pax3 during development, and a disproportionate increase in the percentage of Pax3 positive SCs as a result of experimentally induced muscle hypertrophy, suggests that Pax3 expression in maturing muscle may be more than just a developmental vestige. Pax3 may be a factor in the activation and differentiation of SCs in maturing muscle.
|
10 |
A sensory role for the cruciate ligaments : regulation of joint stability via reflexes onto the γ-muscle-spindle systemSjölander, Per January 1989 (has links)
Reflex effects evoked by graded electrical stimulation of the posterior articular nerves (PAN) of the ipsi- and contralateral knee joints were investigated using both micro-electrode recordings from 7 - motoneurones and recordings from single muscle muscle spindle afferents. Spindle afferent responses were also recorded using natural stimulation of different types of receptors, to elucidate if the articular reflexes onto the y -motoneurones were potent enough to significantly alter the muscle spindle afferent activity. Stretches of the ipsilateral posterior (PCL) and anterior (ACL) cruciate ligaments, pressure on the ipsi- and contralateral knee and ankle joint capsules, and passive flexion/extension movements of the joints in the contralateral hind limb were performed. The occurrance of different sensory endings in the ACL and PCL was examined using gold chloride staining for neuronal elements. All experiments were performed on chloralose anaesthetized cats. More than 90% of the static and dynamic y -motoneurones were responsive to electrical stimulation of the PAN. Most 7-cells responded to low intensity electrical stimulation. Excitatoiy reflex effects predominated on both static and dynamic posterior biceps-semitendinosus (PBSt) 7 -cells, while excitatory and inhibitory effects occurred with an about equal frequency on triceps-plantaris (GS) 7-cells. The fastest segmental route for excitatory PAN effects on hind limb 7-motoneurones seems to be di- or trisynaptic, while the path for inhibitory effects seems to be at least one synaps longer. Physiological stimulations of ipsi- and contralateral joint capsules and of ipsilateral cruciate ligaments were all found to evoke frequent and potent changes in spindle afferent responses from the GS and PBSt muscles. It was shown that these effects were due to reflexes onto dynamic and static fusimotor neurones caused by physiological activation of articular sensory endings. Both ipsi- and contralateral joint receptor stimulation evoked excitatory as well as inhibitory fusimotor effects. The highest responsiveness was found during stimulation of the cruciate ligaments, i.e. 58% for GS and 47% for PBSt primary spindle afferents to PCL stimulation, and 73% for GS and 55% for PBSt primary spindle afferents to ACL stimulation. Significant alterations in spindle afferent activity was encountered at very low traction forces applied to the cruciate ligaments (5-10 N). The low thresholds, the tonic character of the stimuli, and the fact that different types of sensory endings were demonstrated in the cruciate ligaments (i.e. Ruffini endings, Pacinian corpuscles, Golgi tendon organ like endings and free nerve endings), indicate that the fusimotor effects observed were caused by activation of slowly adapting mechanoreceptors, most likely Ruffini endings and/or Golgi tendon organ like endings. The potent reflex effects on the muscle spindle afferents elicited by increased tension in the cruciate ligaments indicate that these ligaments may play a more important sensory role that hitherto believed, and it is suggested that they may be important in the regulation of the stiffness of muscles around the knee joint, and thereby for the joint stability. The possible clinical relevance and the mechanisms by which joint receptor afferents, via adjustment of the muscle stiffness, may control joint stability are discussed. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1989, härtill 7 uppsatser.</p> / digitalisering@umu
|
Page generated in 0.0648 seconds