• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human muscle spindles : complex morphology and structural organisation

Liu, Jing-Xia January 2004 (has links)
Muscle spindles are skeletal muscle mechanoreceptors that mediate the stretch reflex and provide axial and limb position information to the central nervous system. They have been proposed to play a major role in the pathophysiology of muscle pain. Knowledge about the normal human muscle spindles is needed in order to understand their role in muscle disease or dysfunction. The aim of this study was to investigate the fiber content and MyHC composition of the muscle spindles in the human biceps brachii (BB) and deep muscles of the neck (DN); to determine whether there are age-related changes in human muscle spindles with respect to structure and MyHC composition; to investigate the distribution of SERCA isoforms and to evaluate whether there is a coordinated expression of SERCA and MyHC isoforms in intrafusal fibers. The myosin heavy chain (MyHC) content correlates to contraction velocity and force and the sarcoplasmic reticulum Ca2+ ATPase (SERCA) is a major determinant of muscle fiber relaxation velocity. Muscle specimens obtained from young and old subjects were serially sectioned and the pattern of distribution of different proteins along the length of the intrafusal fibers was revealed by immunocytochemistry. The MyHC content of single muscle spindles was assessed with SDS-PAGE and immunoblots. There were clear differences between BB and DN with regard to the morphology and MyHC composition of muscle spindles. Virtually each muscle spindle in the BB, but not in the DN, had a unique allotment of numbers of bag1, bag2 and chain fibers. In DN, a number of muscle spindles lacked either bag1 or bag2 fibers. Four major MyHC isoforms (MyHCI, IIa, α-cardiac and intrafusal) were detected by SDS-PAGE. In both BB and DN, immunocytochemistry revealed co-expression of several MyHC isoforms in each intrafusal fiber and regional heterogeneity. Both nuclear bag1 and bag2 fibers contained slow tonic MyHC uniformly and MyHCI, α-cardiac, embryonic and fetal with regional variations. Nuclear chain fibers contained MyHCIIa, embryonic and fetal and in the BB also MyHCIIx. The total number of intrafusal fibers per spindle decreased significantly with aging, due to a significant reduction in the number of nuclear chain fibers. The patterns of MyHC expression were also affected by aging. The bag1 fibers predominantly contained both SERCA isoforms in the encapsulated region. The bag2 fibers were more heterogeneous in their SERCA composition and 16-27% of them lacked both isoforms. Chain fibers contained SERCA1. There was a poor correlation between the MyHC and SERCA isoforms in nuclear bag fibers, whereas a strong correlation existed between MyHCIIa and SERCA1 in the nuclear chain fibers. Human muscle spindles, each being unique, proved to be more complex than anticipated. The clear differences shown between the BB and DN muscle spindles suggest functional specialization in the control of movement among different human muscles. Aging apparently had profound effects on intrafusal fiber content and MyHC composition. The age-related changes in muscle spindle phenotype may reflect deterioration in sensory and motor innervation and are likely to have a detrimental impact on motor control in the elderly.
2

Cross transfer effects after unilateral muscle overuse : an experimental animal study about alterations in the morphology and the tachykinin system of muscles

Song, Yafeng January 2013 (has links)
Unilateral exercise can produce certain contralateral strength effects. Deleterious events can be cross-transferred as well, as illustrated by a strict symmetry in some chronic inflammatory diseases. To date, knowledge on the effects of marked overuse of skeletal muscles is limited, and there is largely no information if unilateral overuse affects the contralateral muscles. In view of this, the present study was undertaken to test the hypothesis that unilateral muscle overuse causes alterations in tissue structure and the tachykinin system, with a focus on substance P (SP), not only in the exercised muscles, but also in the contralateral muscles. SP is a well-known neuromodulator that is known to be proinflammatory. An experimental rabbit model with unilateral muscle overuse of the soleus and gastrocnemius muscles caused by exercise via electrical muscle stimulation (E/EMS) was used. In total, 40 rabbits were randomly divided into seven groups of which two groups served as controls. The rabbits were anaesthetized and then set on a “kicking machine” to perform exercise via EMS for 2h every second day. Experimental periods for groups 1-3 were 1, 3 and 6w, respectively, whereas groups 4-6 were exercised for 1w but also subjected to injections in the peritendinous tissue with SP, NaCL, Captopril (C), an ACE inhibitor, and DL-Thiorphan (Th) which inhibits the activity of neural endopeptidase. One group was not subjected to the experiment at all. The day after the last session of E/EMS, the soleus muscle and the gastrocnemius muscle from both legs were collected for analysis. Alterations in muscle structure and the tachykinin system were analyzed with enzyme and immunohistochemical techniques, in situ hybridization and EIA methods. After 1w of E/EMS, focal areas of the exercised muscles contained a mild infiltration of inflammatory cells (myositis) and small morphological changes. After 3 and 6w of E/EMS, distinct myositis and muscle changes were bilaterally present in focal areas of both muscles. The structural changes, which mainly were observed in myositis areas, consisted of increased fiber size variability, split fibers, internal myonuclei, necrotic fibers, fibrosis, fat infiltration, and small fibers containing developmental MyHCs. Bilateral morphological changes, such as loss of axons, were also observed in nerves. In addition, expressions of tachykinin and the SP-preferred receptor, the neurokinin-1 (NK-1R), were bilaterally upregulated in nerve structures and blood vessel walls.  Infiltrating white blood cells exhibited tachykinin–like and NK-1R immunoreactivity. NK-1R immunoreactions were also found in necrotic and regenerating muscle fibers. The concentration of tachykinin (SP) was significantly increased in both soleus and gastrocnemius muscles after E/EMS. There was a significant correlation between the two sides in concentration of tachykinin and in the intensity of tachykinin-like immunoreaction in blood vessel walls. The muscle fiber size and capillary supply of fibers were bilaterally decreased after 3w of EMS. The myositis areas contained an increased number of vessels with a larger size than capillaries, while areas with increased amount of connective tissue contained a very low number of capillaries. A bilateral fiber type shift against a lower proportion of slow MyHCI fibers and higher proportion of fast MyHCII fibers was observed in both muscles. The local injections of C+Th and SP+C+Th led to marked structural changes in the muscle tissue and marked increased NK-1R and tachykinin-like immunoreactivity in the myositis areas and increased tachykinin concentration in the tissue. In conclusion, the repetitive unilateral muscle overuse caused by E/EMS led overtime to muscle injury and myositis. The affected areas contained both degenerative and regenerative alterations in the muscle tissue and nerves, and an upregulation of the tachykinin system. Most interestingly, the changes not only occurred in the exercised side, but also in the homologous contralateral muscles. The tachykinin system appears to be an important factor in the processes of crossover effects.
3

Expressão gênica e protéica de isoformas de cadeia pesada de miosina e maciez da carne de bovinos de diferentes grupos genéticos

Castan, Eduardo Paulino [UNESP] 23 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-23Bitstream added on 2014-06-13T19:02:43Z : No. of bitstreams: 1 castan_ep_me_jabo.pdf: 814189 bytes, checksum: bf17987f6d60cbfe49a31bc1fab15b47 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Sabendo que o processo de transformação do músculo em carne no estágio postmortem é largamente governado pela proporção de distintos tipos de fibras, e tendo em vista a necessidade de suprir as demandas do setor da pecuária bem como as exigências do consumidor por um produto de maior qualidade, inclusive da carne, o presente projeto objetivou relacionar a maciez da carne do músculo Longissimus dorsi (LD) com a expressão gênica e protéica das isoformas da cadeia pesada da miosina (MHC) em dois grupos genéticos de bovinos. Foram analisados 28 bovinos jovens de dois grupos genéticos, 14 Nelores e 14 Canchins. Os animais receberam a mesma dieta, o mesmo manejo no mesmo ambiente, com a finalidade de mantê-los no mesmo estado fisiológico. Atingindo o tempo pré-estabelecido de confinamento de 140 dias, os animais foram abatidos e amostras do músculo LD foram coletadas para análise da maciez da carne e também para a quantificação das expressões gênicas e protéicas das isoformas de MHC através das técnicas de RT-qPCR e de separação eletroforética (SDS-PAGE) respectivamente. O grupo Canchim apresentou maior maciez da carne em relação ao grupo Nelore em ambas as metodologias utilizadas, força de cisalhamento e índice de fragmentação miofibrilar, bem como uma menor expressão gênica da isoforma de MHC 2X. Foi verificada uma correlação negativa da expressão das isoformas 2A e 2X e uma correlação positiva da expressão da isoforma de MHC Slow com a maciez da carne nos dois grupos genéticos. Os resultados sugerem que a menor maciez da carne do grupo Nelore em relação ao grupo Canchim possa estar relacionada com a maior expressão gênica da isoforma de MHC 2X no grupo Nelore / Knowing that the meat tenderness process that turns muscle in meat on postmortem are largely governed by the proportion of different fiber types, and in view of the need to supply the needs of livestock industry and consumer demands for a higher quality product, including meat, this project aimed to relate meat tenderness of Longissimus dorsi muscle (LD) with gene and protein expression of myosin heavy chain (MHC) isoforms in two genetic groups of cattle. Twenty-eight steers of two genetic groups, 14 Nellores and 14 Canchins were used. The animals received the same feed, the same management in the same environment, in order to keep them in the same physiological state. After 140 days of feedlot, the animals were slaughtered and LD muscle samples were collected for meat tenderness analysis and also for gene and protein expression quantification of MHC isoforms using RT-qPCR and electrophoretic separation (SDS-PAGE) technique, respectively. The Canchim group had better meat tenderness in relation to Nellore group in both methodologies used, shear force and myofibrillar fragmentation index and lower MHC 2X isoform gene expression. It was observed a negative correlation between 2A and 2X isoforms expression and a positive correlation of MHC Slow isoform expression to meat tenderness in the two genetic groups. The results suggest that lower meat tenderness of Nellore group in relation to Canchim group may be related to higher gene expression of MHC 2X isoform in Nellore group
4

EXPRESSION OF HISTONE DEACETYLASE 4 AND HISTONE ACETYLTRANSFERASE 4 IN HUMAN MASSETER MUSCLE: RELATIONS TO FIBER-TYPE COMPOSITION IN PATIENTS WITH MALOCCLUSIONS

Huh, Ahrin January 2012 (has links)
Significant advances have been made in orthodontics and oral maxillofacial surgery for the diagnosis and treatment of dentofacial deformities. However, compared with bone, the effect of muscles of the craniofacial complex in the development of dentofacial deformities has received little attention. Recently, cellular and molecular studies of the musculoskeletal interactions have been used to investigate the etiology of dentofacial malocclusions. In this study, we tested for relationships that might exist between gene expression of the chromatin modifying enzymes histone deacetylase-4 (HDAC4) and histone acetyltransferase-4 (MYST4) and expression of myosin heavy chain (MyHC) genes and fiber-type percent occupancy (%Occ) in masseter muscle of patients undergoing orthognathic surgery to correct severe dentofacial malocclusions. The diagnostic categories of malocclusion in sagittal and vertical dimensions were: 1) Deep bite-Class II (D2); 2) Deep bite-Class III (D3); 3) Normal bite-Class II (N2); 4) Normal bite-Class III (N3), 5) Open bite-Class II (O2); 6) open bite with Class III (O3). Relative quantities (RQs) of gene expression were determined by reverse transcriptase real time polymerase chain reaction (RT-PCR) in RNA extracts of masseter samples, previously analyzed by immunohistochemistry for %Occ values. By multivariate analysis, RQs of HDAC4 and MYST4 expression did not differ significantly between malocclusion types. However, multiple high positive and negative correlations were found for HDAC4 and MYST4 with MyHC expression and with fiber type %Occ. Significant correlations occurred for HDAC4 with: IIX and neonatal MyHCs respectively in N2 and N3 subjects; fiber types I, I/II and neonatal/atrial %Occ respectively in D2 and N3, D2 and O3 subjects. Further investigations are needed to support evidence of these correlations and determine their significance toward diagnosis, treatment and relapse potential in the correction of dentofacial deformities. / Oral Biology
5

Die Rolle der Chemokinrezeptoren CXCR4 und CXCR7 bei der Entwicklung der Extremitätenmuskulatur der Maus

Hunger, Conny 18 March 2013 (has links) (PDF)
Das Chemokine SDF-1α und sein Rezeptor CXCR4 sind in eine Vielzahl biologischer Prozesse, wie der Organogenese, der Hämatopoese und der Immunantwort involviert. Die Entdeckung des alternativen SDF-1α-Rezeptors CXCR7 bewirkte eine erneute Untersuchung der Funktion des SDF-1-Systems in diesen Vorgängen. CXCR7 ist in der Lage, je nach Gewebe- oder Zelltyp, als \"Scavenger\"-Rezeptor, Modulator des CXCR4 oder selbstständig aktiver Rezeptor zu agieren. In dieser Arbeit wurde untersucht, inwiefern beide Rezeptoren im Verlauf der Entwicklung der Muskulatur exprimiert werden, welche Aufgabe sie dabei übernehmen und ob sich Rückschlüsse auf die Muskelregeneration daraus ableiten lassen. Hierfür erfolgten in vitro-Untersuchungen an C2C12-Zellen und die anschließende Analyse der Expression von CXCR4, CXCR7 und SDF-1α in der sich entwickelnden Gliedmaßenmuskulatur von Wildtyp- und mdx-Mäusen. Die Untersuchung von C2C12-Zellen zeigte in allen Differenzierungsstadien eine detektierbare Menge von CXCR4 und eine zunehmende Expression des CXCR7. Die Behandlung der Zellen mit SDF-1α führte zu einer Phosphorylierung von Erk1/2 und PKCζ/λ und hemmte gleichzeitig deren Differenzierung. Nach einer Blockierung des CXCR4 mit seinem pharmakologischen Antagonist AMD3100 oder nach Hemmung der Expression durch spezifische siRNA blieb die Aktivierung des Signalweges aus und der hemmende Einfluss des SDF-1α auf die Differenzierung verschwand vollständig. Im Gegensatz dazu blieben nach der pharmakologischen Blockierung oder durch siRNA vermittelten Expressionshemmung des CXCR7 alle SDF-1α induzierten Effekte vollständig erhalten. Eine Untersuchung des Signalweges am dritten Tag der Differenzierung zeigte keine Aktivierung von Erk1/2. Ebenso blieb Erk1/2 nach einer Hemmung der Expression des CXCR4 unphosphoryliert. Im Gegensatz dazu fand nach einer Hemmung der Expression des CXCR7 mit spezifischer siRNA erneut eine Aktivierung des Signalweges statt. Weiterhin konnte in vivo festgestellt werden, dass die Expression des CXCR4 in der Muskulatur während der embryonalen Entwicklung am höchsten ist und bereits kurz nach der Geburt stark abnimmt, wenn die sekundäre Muskelentwicklung abgeschlossen ist. Die Expression des CXCR7 hingegen steigt perinatal an und bleibt bis zum Erwachsenenalter bestehen. Zusammengefasst zeigen diese Ergebnisse, dass CXCR4 aktiv das Signalgeschehen von SDF-1α in der Myogenese vermittelt und somit zur Differenzierungshemmung von Myoblasten beiträgt. CXCR7 hingegen wirkt als passiver SDF-1α-Scavenger und induziert somit durch eine Modulierung der extrazellulären SDF-1α-Konzentration die Differenzierung. In Übereinstimmung mit der Rolle des SDF-1α-Systems bei der Muskelentwicklung, konnte eine kontinuierliche SDF-1α- Expression im Bindegewebe um pränatale und im Endomysium von postnatalen und adulten Muskelfasern festgestellt werden. Diese SDF-1α-Expression stieg ebenso wie die CXCR4-Expression bei der Analyse der Muskulatur von dystrophin-defizienten Mäusen an und zeigte somit, dass dieses System auch für die Proliferation von Muskelvorläuferzellen in der regenerativen Muskulatur eine wichtige Rolle spielt. Bemerkenswerter Weise hatte diese Muskeldystrophie keinen Einfluss auf die Expression des CXCR7 und beeinflusst vermutlich dessen Funktion über einen anderen Mechanismus. Durch die offensichtlich enge Kontrolle von Muskelentwicklung und Regeneration durch CXCR4, CXCR7 und deren Liganden SDF-1α, bilden diese ein vielversprechendes therapeutisches Ziel für bestimmte Muskelerkrankungen. / The chemokine, SDF-1α, and its receptor, CXCR4, are assumed to control a multitude of biological processes such as organogenesis, haematopoesis, and immune responses. The previous demonstration that SDF-1α additionally binds to the chemokine receptor, CXCR7, currently urges a re-evaluation of the function of the SDF-1 system in these processes. In fact, depending on the tissue and cell type, CXCR7 either acts as a scavenger receptor, a modulator of CXCR4 or an independent active receptor. This thesis is dedicated to answer the following questions: Are both SDF-1α receptors expressed during muscle development? What is the actual function of these receptors during myogenesis? Is there a role of the SDF-1 system in muscle regeneration? To adress these issues both in vitro studies with the myoblast cell line, C2C12, as well as in vivo analyses on the expression of CXCR4, CXCR7 and SDF-1α in developing and regenerating limb muscles have been performed. At all stages of differentiation, C2C12 cells exhibited measurable amounts of CXCR4. In addition, in the course of differentiation C2C12 cells showed increasing expression levels of CXCR7. Treatment of the cells with SDF-1α resulted in the phosphorylation of Erk1/2 and PKCζ/λ and subsequently blocked their myogenic differentiation. Following inactivation of CXCR4 either by its antagonist, AMD3100, or by specific siRNA, SDF-1α failed to activate both pathways and in addition no longer inhibited the myogenic differentiation of C2C12 cells. By contrast, inactivation of CXCR7 remained without effects on SDF-1α-induced cell signalling and resulting inhibitory effects on myogenic differentiation. Interestingly, SDF-1α also failed to activate Erk1/2 signalling in differentiated C2C12 cells. Cell signalling in differentiated C2C12 cells was, however, restored following inhibition of CXCR7 expression, but not following inhibition of CXCR4 expression. The in vivo analysis further revealed that in limb muscles expression of the CXCR4 is highest during embryonic development with a decrease in expression levels shortly after birth when secondary muscle development is completed. Vice versa, expression levels of CXCR7 increased perinatally and remained high into adulthood. In summary, these findings unravel that CXCR4 actively mediates SDF-1α-signalling during myogenesis. The findings further provide evidence that CXCR7 acts as a scavenger receptor during myogenesis which controls myogenic differentiation by modulating extracellular SDF-1α concentration. In further agreement with a major role of SDF-1α in muscle development, SDF-1α is continously expressed by the endomysium of postnatal and adult muscle fibers. Moreover, expression of SDF-1α as well as CXCR4 is massively increased in muscles of dystrophin-deficient mice further implying that the SDF-1 system plays an equally important role during muscle development and regeneration. The pivotal role of SDF-1α in muscle development and regeneration points to the SDF-1 system as a promising therapeutical target for certain muscle diseases.
6

Expressão gênica e protéica de isoformas de cadeia pesada de miosina e maciez da carne de bovinos de diferentes grupos genéticos /

Castan, Eduardo Paulino. January 2010 (has links)
Resumo: Sabendo que o processo de transformação do músculo em carne no estágio postmortem é largamente governado pela proporção de distintos tipos de fibras, e tendo em vista a necessidade de suprir as demandas do setor da pecuária bem como as exigências do consumidor por um produto de maior qualidade, inclusive da carne, o presente projeto objetivou relacionar a maciez da carne do músculo Longissimus dorsi (LD) com a expressão gênica e protéica das isoformas da cadeia pesada da miosina (MHC) em dois grupos genéticos de bovinos. Foram analisados 28 bovinos jovens de dois grupos genéticos, 14 Nelores e 14 Canchins. Os animais receberam a mesma dieta, o mesmo manejo no mesmo ambiente, com a finalidade de mantê-los no mesmo estado fisiológico. Atingindo o tempo pré-estabelecido de confinamento de 140 dias, os animais foram abatidos e amostras do músculo LD foram coletadas para análise da maciez da carne e também para a quantificação das expressões gênicas e protéicas das isoformas de MHC através das técnicas de RT-qPCR e de separação eletroforética (SDS-PAGE) respectivamente. O grupo Canchim apresentou maior maciez da carne em relação ao grupo Nelore em ambas as metodologias utilizadas, força de cisalhamento e índice de fragmentação miofibrilar, bem como uma menor expressão gênica da isoforma de MHC 2X. Foi verificada uma correlação negativa da expressão das isoformas 2A e 2X e uma correlação positiva da expressão da isoforma de MHC Slow com a maciez da carne nos dois grupos genéticos. Os resultados sugerem que a menor maciez da carne do grupo Nelore em relação ao grupo Canchim possa estar relacionada com a maior expressão gênica da isoforma de MHC 2X no grupo Nelore / Abstract: Knowing that the meat tenderness process that turns muscle in meat on postmortem are largely governed by the proportion of different fiber types, and in view of the need to supply the needs of livestock industry and consumer demands for a higher quality product, including meat, this project aimed to relate meat tenderness of Longissimus dorsi muscle (LD) with gene and protein expression of myosin heavy chain (MHC) isoforms in two genetic groups of cattle. Twenty-eight steers of two genetic groups, 14 Nellores and 14 Canchins were used. The animals received the same feed, the same management in the same environment, in order to keep them in the same physiological state. After 140 days of feedlot, the animals were slaughtered and LD muscle samples were collected for meat tenderness analysis and also for gene and protein expression quantification of MHC isoforms using RT-qPCR and electrophoretic separation (SDS-PAGE) technique, respectively. The Canchim group had better meat tenderness in relation to Nellore group in both methodologies used, shear force and myofibrillar fragmentation index and lower MHC 2X isoform gene expression. It was observed a negative correlation between 2A and 2X isoforms expression and a positive correlation of MHC Slow isoform expression to meat tenderness in the two genetic groups. The results suggest that lower meat tenderness of Nellore group in relation to Canchim group may be related to higher gene expression of MHC 2X isoform in Nellore group / Orientador: Henrique Nunes De Oliveira / Coorientadora: Maeli Dal Pai Silva / Banca: Robson Francisco Carvalho / Banca: Rafael da Costa Cervieri / Mestre
7

Die Rolle der Chemokinrezeptoren CXCR4 und CXCR7 bei der Entwicklung der Extremitätenmuskulatur der Maus

Hunger, Conny 18 March 2013 (has links)
Das Chemokine SDF-1α und sein Rezeptor CXCR4 sind in eine Vielzahl biologischer Prozesse, wie der Organogenese, der Hämatopoese und der Immunantwort involviert. Die Entdeckung des alternativen SDF-1α-Rezeptors CXCR7 bewirkte eine erneute Untersuchung der Funktion des SDF-1-Systems in diesen Vorgängen. CXCR7 ist in der Lage, je nach Gewebe- oder Zelltyp, als \'Scavenger\'-Rezeptor, Modulator des CXCR4 oder selbstständig aktiver Rezeptor zu agieren. In dieser Arbeit wurde untersucht, inwiefern beide Rezeptoren im Verlauf der Entwicklung der Muskulatur exprimiert werden, welche Aufgabe sie dabei übernehmen und ob sich Rückschlüsse auf die Muskelregeneration daraus ableiten lassen. Hierfür erfolgten in vitro-Untersuchungen an C2C12-Zellen und die anschließende Analyse der Expression von CXCR4, CXCR7 und SDF-1α in der sich entwickelnden Gliedmaßenmuskulatur von Wildtyp- und mdx-Mäusen. Die Untersuchung von C2C12-Zellen zeigte in allen Differenzierungsstadien eine detektierbare Menge von CXCR4 und eine zunehmende Expression des CXCR7. Die Behandlung der Zellen mit SDF-1α führte zu einer Phosphorylierung von Erk1/2 und PKCζ/λ und hemmte gleichzeitig deren Differenzierung. Nach einer Blockierung des CXCR4 mit seinem pharmakologischen Antagonist AMD3100 oder nach Hemmung der Expression durch spezifische siRNA blieb die Aktivierung des Signalweges aus und der hemmende Einfluss des SDF-1α auf die Differenzierung verschwand vollständig. Im Gegensatz dazu blieben nach der pharmakologischen Blockierung oder durch siRNA vermittelten Expressionshemmung des CXCR7 alle SDF-1α induzierten Effekte vollständig erhalten. Eine Untersuchung des Signalweges am dritten Tag der Differenzierung zeigte keine Aktivierung von Erk1/2. Ebenso blieb Erk1/2 nach einer Hemmung der Expression des CXCR4 unphosphoryliert. Im Gegensatz dazu fand nach einer Hemmung der Expression des CXCR7 mit spezifischer siRNA erneut eine Aktivierung des Signalweges statt. Weiterhin konnte in vivo festgestellt werden, dass die Expression des CXCR4 in der Muskulatur während der embryonalen Entwicklung am höchsten ist und bereits kurz nach der Geburt stark abnimmt, wenn die sekundäre Muskelentwicklung abgeschlossen ist. Die Expression des CXCR7 hingegen steigt perinatal an und bleibt bis zum Erwachsenenalter bestehen. Zusammengefasst zeigen diese Ergebnisse, dass CXCR4 aktiv das Signalgeschehen von SDF-1α in der Myogenese vermittelt und somit zur Differenzierungshemmung von Myoblasten beiträgt. CXCR7 hingegen wirkt als passiver SDF-1α-Scavenger und induziert somit durch eine Modulierung der extrazellulären SDF-1α-Konzentration die Differenzierung. In Übereinstimmung mit der Rolle des SDF-1α-Systems bei der Muskelentwicklung, konnte eine kontinuierliche SDF-1α- Expression im Bindegewebe um pränatale und im Endomysium von postnatalen und adulten Muskelfasern festgestellt werden. Diese SDF-1α-Expression stieg ebenso wie die CXCR4-Expression bei der Analyse der Muskulatur von dystrophin-defizienten Mäusen an und zeigte somit, dass dieses System auch für die Proliferation von Muskelvorläuferzellen in der regenerativen Muskulatur eine wichtige Rolle spielt. Bemerkenswerter Weise hatte diese Muskeldystrophie keinen Einfluss auf die Expression des CXCR7 und beeinflusst vermutlich dessen Funktion über einen anderen Mechanismus. Durch die offensichtlich enge Kontrolle von Muskelentwicklung und Regeneration durch CXCR4, CXCR7 und deren Liganden SDF-1α, bilden diese ein vielversprechendes therapeutisches Ziel für bestimmte Muskelerkrankungen. / The chemokine, SDF-1α, and its receptor, CXCR4, are assumed to control a multitude of biological processes such as organogenesis, haematopoesis, and immune responses. The previous demonstration that SDF-1α additionally binds to the chemokine receptor, CXCR7, currently urges a re-evaluation of the function of the SDF-1 system in these processes. In fact, depending on the tissue and cell type, CXCR7 either acts as a scavenger receptor, a modulator of CXCR4 or an independent active receptor. This thesis is dedicated to answer the following questions: Are both SDF-1α receptors expressed during muscle development? What is the actual function of these receptors during myogenesis? Is there a role of the SDF-1 system in muscle regeneration? To adress these issues both in vitro studies with the myoblast cell line, C2C12, as well as in vivo analyses on the expression of CXCR4, CXCR7 and SDF-1α in developing and regenerating limb muscles have been performed. At all stages of differentiation, C2C12 cells exhibited measurable amounts of CXCR4. In addition, in the course of differentiation C2C12 cells showed increasing expression levels of CXCR7. Treatment of the cells with SDF-1α resulted in the phosphorylation of Erk1/2 and PKCζ/λ and subsequently blocked their myogenic differentiation. Following inactivation of CXCR4 either by its antagonist, AMD3100, or by specific siRNA, SDF-1α failed to activate both pathways and in addition no longer inhibited the myogenic differentiation of C2C12 cells. By contrast, inactivation of CXCR7 remained without effects on SDF-1α-induced cell signalling and resulting inhibitory effects on myogenic differentiation. Interestingly, SDF-1α also failed to activate Erk1/2 signalling in differentiated C2C12 cells. Cell signalling in differentiated C2C12 cells was, however, restored following inhibition of CXCR7 expression, but not following inhibition of CXCR4 expression. The in vivo analysis further revealed that in limb muscles expression of the CXCR4 is highest during embryonic development with a decrease in expression levels shortly after birth when secondary muscle development is completed. Vice versa, expression levels of CXCR7 increased perinatally and remained high into adulthood. In summary, these findings unravel that CXCR4 actively mediates SDF-1α-signalling during myogenesis. The findings further provide evidence that CXCR7 acts as a scavenger receptor during myogenesis which controls myogenic differentiation by modulating extracellular SDF-1α concentration. In further agreement with a major role of SDF-1α in muscle development, SDF-1α is continously expressed by the endomysium of postnatal and adult muscle fibers. Moreover, expression of SDF-1α as well as CXCR4 is massively increased in muscles of dystrophin-deficient mice further implying that the SDF-1 system plays an equally important role during muscle development and regeneration. The pivotal role of SDF-1α in muscle development and regeneration points to the SDF-1 system as a promising therapeutical target for certain muscle diseases.

Page generated in 0.0236 seconds