Epigenetic differences between maternally inherited and paternally inherited chromosomes, such as CpG methylation, render the maternal and paternal genome functionally inequivalent, a phenomenon called genomic imprinting. This functional inequivalence is exemplified with imprinted genes, whose expression is parent-of-origin specific. The dosage of imprinted gene expression is disrupted in cells with uniparental disomy (UPD), which is an unequal parental contribution to the genome. I have derived mouse embryonic stem (ES) cell sub-lines with maternal UPD (mUPD) for mouse chromosome 6 (MMU6) to characterize regulation and maintenance of imprinted gene expression.
The main finding from this study is that maintenance of imprinting in mitotic UPD is extremely variable. Imprint maintenance was shown to vary from gene to gene, and to vary between ES cell lines depending on the mechanism of loss of heterozygosity (LOH) in that cell line. Certain genes analyzed, such as Peg10, Sgce, Peg1, and Mit1 showed abnormal expression in ES cell lines for which they were mUPD. These abnormal expression levels are similar to that observed in ES cells with meiotically-derived full genome mUPD (parthenogenetic ES cells).
Imprinted CpG methylation at the Peg1 promoter was found to be abnormal in all sub-lines with mUPD for Peg1. Two cell sub-lines which incurred LOH through mitotic recombination showed hypermethylation of Peg1, consistent with the presence of two maternal alleles. Surprisingly, a cell sub-line which incurred LOH through full chromosome duplication/loss showed hypomethylation of Peg1. The levels of methylation observed in these sub-lines correlates with expression, as the first two sub-lines showed a near-consistent reduction of Peg1, while the latter showed Peg1 levels close to wild-type.
Altogether these results suggest that certain imprinted genes, like Peg1 and Peg10, have stricter imprinting maintenance, and as a result show abnormal expression in UPD. This strict imprint maintenance is disrupted, however, in UPD incurred through full chromosome duplication/loss, possibly because of the trisomic intermediate stage which occurs in this mechanism.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/1564 |
Date | 11 1900 |
Creators | Elves, Rachel Leigh |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0023 seconds