Mon travail de thèse est composé de deux parties bien distinctes, la première partie est consacrée à l’analysestochastique en temps discret des marches aléatoires obtuses quant à la deuxième partie, elle est liée aux probabili-tés libres. Dans la première partie, on donne une construction des intégrales stochastiques itérées par rapport à unefamille de martingales normales d-dimentionelles. Celle-ci permet d’étudier la propriété de représentation chaotiqueen temps discret et mène à une construction des opérateurs gradient et divergence sur les chaos de Wiener correspon-dant. [...] d’une EDP non linéaire alors que la deuxième est de nature combinatoire.Dans un second temps, on a revisité la description de la mesure spectrale de la partie radiale du mouvement Browniensur Gl(d,C) quand d ! +¥. Biane a démontré que cette mesure est absolument continue par rapport à la mesurede Lebesgue et que son support est compact dans R+. Notre contribution consiste à redémontrer le résultat de Bianeen partant d’une représentation intégrale de la suite des moments sur une courbe de Jordon autour de l’origine etmoyennant des outils simples de l’analyse réelle et complexe. / My PhD work is composed of two parts, the first part is dedicated to the discrete-time stochastic analysis for obtuse random walks as to the second part, it is linked to free probability. In the first part, we present a construction of the stochastic integral of predictable square-integrable processes and the associated multiple stochastic integrals ofsymmetric functions on Nn (n_1), with respect to a normal martingale.[...] In a second step, we revisited thedescription of the marginal distribution of the Brownian motion on the large-size complex linear group. Precisely, let (Z(d)t )t_0 be a Brownian motion on GL(d,C) and consider nt the limit as d !¥ of the distribution of (Z(d)t/d)⋆Z(d)t/d with respect to E×tr.
Identifer | oai:union.ndltd.org:theses.fr/2013BESA2015 |
Date | 07 December 2013 |
Creators | Hamdi, Tarek |
Contributors | Besançon, Université de Tunis El Manar, Uwe, Franz, Ben Salem, Néjib |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds