Return to search

Redes neurais e algoritmos genéticos no estudo quimiossistemático da família Asteraceae / Neural Network and Genetic Algorithms in the Chemosystematic study of Asteraceae Family

No presente trabalho duas metodologias da área de inteligência artificial (Redes Neurais e Algoritmos Genéticos) foram utilizadas para realizar um estudo Quimiossistemático da família Asteraceae. A família Asteraceae é uma das maiores famílias entre as Angiospermas, conta com aproximadamente 24.000 espécies. As espécies da família produzem grande diversidade de metabólitos secundários, entre os quais merecem destaque os terpenóides, poliacetilenos, flavonóides e cumarinas. Para um melhor entendimento da diversidade química da família construiu-se um Banco de Dados com as ocorrências de doze classes de metabólitos (monoterpenos, sesquiterpenos, sesquiterpenos lactonizados, diterpenos, triterpenos, cumarinas, flavonóides, poliacetilenos, benzofuranos, benzopiranos, acetofenonas e fenilpropanóides) produzidos pelas espécies da família. A partir desse banco três diferentes estudos foram realizados. No primeiro estudo, utilizando os mapas auto-organizáveis de Kohonen e o banco de dados químico classificado segundo duas das mais recentes filogenias da família foi possível realizar com sucesso separações de tribos e gêneros da família Asteraceae. Também foi possível indicar que a informação química concorda mais com a filogenia de Funk (Funk et al. 2009) do que com a filogenia de Bremer (Bremer 1994, 1996). No estudo seguinte, onde se objetivou a criação de modelos de previsão dos números de ocorrências das doze classes de metabólitos, utilizando o perceptron de múltiplas camadas com algoritmo de retropropagação de erro, o resultado foi insatisfatório. Apesar de em algumas classes de metabólitos a fase de treino da rede apresentar resultados satisfatórios, a fase de teste mostrou que os modelos criados não são capazes de realizar previsão para dados aos quais eles não foram submetidos na fase de treino, e portanto não são modelos adequados para realizar previsões. Finalmente, o terceiro estudo consistiu na criação de modelos de regressão linear utilizando como método de seleção de variáveis os algoritmos genéticos. Nesse estudo foi possível indicar que os monoterpenos e os sesquiterpenos são bastante relacionados biossinteticamente, também foi possível indicar que existem relações biossintéticas entre monoterpenos e diterpenos e entre sesquiterpenos e triterpenos / In this study two methods of artificial intelligence (neural network and genetic algorithms) were used to work out a Chemosystematic study of the Asteraceae family. The family Asteraceae is one of the largest families among the Angiosperms, having about 24,000 species. The species of the family produce a large diversity of secondary metabolites, and some worth mentioning are the terpenoids, polyacetylenes, flavonoids and coumarins. For a better understanding of the chemical diversity of the family a database was built up with the occurrences of twelve classes of metabolites (monoterpenes, sesquiterpenes, lactonizadossesquiterpenes, diterpenes, triterpenes, coumarins, flavonoids, polyacetylenes, Benzofurans, benzopyrans, acetophenones and phenylpropanoids) produced by species of the family. From this database three different studies were conducted. In the first study, using the Kohonen self-organized map and the chemical data classified according to two of the most recent phylogenies of the family, it was possible to successfully separatethe tribes and genera of the Asteraceae family. It was also possible to indicate that the chemical information agrees with the phylogeny of Funk (Funk et al. 2009) than with the phylogeny of Bremer (Bremer 1994, 1996). In the next study, which aims at creating models to predict the number of occurrences of the twelve classes of metabolites using multi-layer perceptron with backpropagation algorithm error, the result was found unsatisfactory. Although in some classes of metabolites the training phase of the network has satisfactory results, the test phase showed that the models created are not able to make prevision for data to which they were submitted in the training phase and thus are not suitable models for predictions. Finally, the third study was the creation of linear regression models using a genetic algorithm method of variable selection. This study could indicate that the monoterpenes and sesquiterpenes are closely related biosynthetically, and was also possible to indicate that there are biosynthetic relations between monoterpenes and diterpenes and between sesquiterpenes and triterpenes

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-12082013-153222
Date16 March 2010
CreatorsMauro Vicentini Correia
ContributorsVicente de Paulo Emerenciano, Marcelo José Pena Ferreira, Maria Auxiliadora Coelho Kaplan
PublisherUniversidade de São Paulo, Química, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds