La généralisation de données géographiques est l'opération de simplification de ces données effectuée lors de la diminution de leur échelle de représentation. Cette thèse s'appuie sur le modèle de généralisation automatique à base d'agents de (Ruas et Duchêne, 2007), qui a été mis en oeuvre avec succès pour la généralisation des objets géographiques discrets (bâtiments, routes, etc.). L'objectif est de permettre une prise en compte d'un nouveau type de thèmes, appelés "thèmes champ", comme le relief ou l'occupation du sol. Ces thèmes ont pour particularité d'être définis en tout point de l'espace. Nous souhaitons permettre une préservation des relations pouvant exister entre les objets géographiques et les champs, comme par exemple le fait qu'un cours d'eau s'écoule sur le relief. Pour répondre à cet objectif, nous proposons le modèle de généralisation GAEL (Généralisation à base d'Agents Elastiques) qui permet d'appliquer des déformations aux champs pour préserver les relations objet-champ. Les champs sont modélisés comme des agents, dits élastiques, qui ont la capacité de se déformer pour amortir les opérations de généralisation appliquées aux objets géographiques (bâtiments, routes, etc.). Ces déformations sont obtenues en s'appuyant sur une décomposition des champs en petits éléments contraints (points, segments, triangles, etc.) et sur une modélisation des points composant les champs sous forme d'agents. Couplé au modèle de (Ruas et Duchêne, 2007), le modèle GAEL permet de disposer d'un modèle de généralisation hybride, capable d'effectuer à la fois des opérations discrètes et continues
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00323617 |
Date | 01 July 2008 |
Creators | Gaffuri, Julien |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds