Les matériaux III-Sb ont prouvé leur potentiel pour la réalisation de composants opto-électroniques dans des domaines aussi variés que les télécommunications ou l'environnement. Cependant, ils restent une filière quasi-inexplorée pour les systèmes photovoltaïques classiques. Dans ce projet de recherche, nous voulons démontrer que les composants à base d'antimoniures sont des candidats prometteurs pour des cellules solaires à haute efficacité et bas coût. Leurs avantages sont multiples : non seulement offrent-ils un large panel d'alliages accordés en maille et des jonctions tunnel à basse résistivité, mais ils permettent aussi une croissance directe sur substrat de Si. Nous étudions donc les briques élémentaires d'une cellule solaire multi-jonction intégrée sur Si. Tout d'abord, nous développons la croissance et fabrication de cellules homo-épitaxiales en GaSb. Les caractéristiques tension-intensité (J-V) mesurées sont proches de l'état de l'art avec une efficacité sous un soleil de 5.9 %. Puis, nous intégrons une cellule à simple jonction GaSb sur un substrat de Si par épitaxie par jet moléculaire (EJM). Les analyses de diffraction X (DRX) et de microscopie à force atomique (AFM) montrent des propriétés de structure et morphologie proches de celles reportées pour des buffers métamorphiques similaires dans la littérature. Nous adaptons alors la configuration de la cellule pour éviter la haute densité de défauts à l'interface GaSb/Si. La cellule hétéro-épitaxiale a une efficacité réduite de 0.6 %. Ce résultat est néanmoins proche des dernières avancées sur les cellules GaSb sur GaAs, et ce, malgré un désaccord de maille plus important. Enfin, nous étudions l'épitaxie d'AlInAsSb. Cet alliage pourrait en théorie atteindre une grande gamme d'énergies de bande interdite tout en restant accordé sur GaSb. Néanmoins, il souffre d'une lacune de miscibilité importante, le rendant sujet à la ségrégation de phase. Il n'y a que peu de mentions de l'AlInAsSb dans la littérature, et toutes rapportent des conditions de croissance instables et des énergies de bande interdite plus basses qu'attendues. Nous réussissons à produire des couches de bonne qualité d'AlInAsSb dont la composition en Al varie de 0.25 à 0.75 et ne présentant aucun signe macroscopique de décomposition de phase. Toutefois, l'observation au microscope à transmission électronique (TEM) révèle des fluctuations de composition nanométriques. Les données de photoluminescence (PL) sont étudiées pour déterminer les propriétés électroniques de l'alliage. Les mesures d'efficacité quantique (QE) montrent que la sous-cellule du haut limite la performance de la cellule tandem. Des modélisations numériques des courbes J-V et QE sont utilisées pour identifier des pistes d'amélioration pour chaque brique élémentaire. / III-Sb materials have demonstrated their potential for multiple opto-electronic devices, with applications stretching from communications to environment. However, they remain an almost unexplored segment for classical photovoltaic systems. In this research, we intend to demonstrate that III-Sb-based devices are promising candidates for high-efficiency, low-cost solar cells. Their benefits are two-fold: not only do they offer a wide range of lattice-matched alloys and low-resistivity tunnel junctions, but they also enable direct growth on Si substrates. We thus investigate the building blocks of a GaSb-based multi-junction solar cell integrated onto Si. First, we develop the photovoltaic growth and processing by fabricating homo-epitaxial GaSb cells. Intensity-voltage (J-V) measurements approach the state of the art with 1-sun efficiency of 5.9%. Then, we integrate a GaSb single-junction cell on a Si substrate by molecular beam epitaxy (MBE). X-ray diffraction (XRD) and atomic force microscopy (AFM) analysis show structural and morphological properties close to the best reported in the literature for similar metamorphic buffers. We further adapt the cell configuration to circumvent the high defect density at the GaSb/Si interface. The heteroepitaxial cell results in a reduced efficiency of 0.6%. Nevertheless, this performance is close the most recent advancements on GaSb heteroepitaxial cells on GaAs, despite a much larger mismatch. Last, we investigate the epitaxy of AlInAsSb. This alloy could in theory reach the widest range of bandgap energies while being lattice-matched to GaSb. However, it presents a large miscibility gap, making it vulnerable to phase segregation. AlInAsSb only counts few experimental reports in the literature, all referring to unoptimized growth conditions and abnormally low bandgap energies. We successfully grow good-quality layers with Al composition x_{Al} ranging from 0.25 to 0.75, showing no macroscopic sign of decomposition. Yet, transmission electron microscopy (TEM) observations point to nanometric fluctuations of the quaternary composition. Photoluminescence (PL) data is studied to determine the alloy's electronic properties. We eventually propose and fabricate a tandem cell structure, resulting in 5.2% efficiency. Quantum Efficiency (QE) measurements reveal that the top subcell is limiting the tandem performance. Numerical fits to both J-V and QE data indicate improvement paths for each building block.
Identifer | oai:union.ndltd.org:theses.fr/2019MONTS003 |
Date | 21 March 2019 |
Creators | Tournet, Julie |
Contributors | Montpellier, Tournié, Eric, Rouillard, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0146 seconds