• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

III-Sb-based solar cells and their integration on Si / Cellules solaires à base d'antimoniures et leur intégration sur Si

Tournet, Julie 21 March 2019 (has links)
Les matériaux III-Sb ont prouvé leur potentiel pour la réalisation de composants opto-électroniques dans des domaines aussi variés que les télécommunications ou l'environnement. Cependant, ils restent une filière quasi-inexplorée pour les systèmes photovoltaïques classiques. Dans ce projet de recherche, nous voulons démontrer que les composants à base d'antimoniures sont des candidats prometteurs pour des cellules solaires à haute efficacité et bas coût. Leurs avantages sont multiples : non seulement offrent-ils un large panel d'alliages accordés en maille et des jonctions tunnel à basse résistivité, mais ils permettent aussi une croissance directe sur substrat de Si. Nous étudions donc les briques élémentaires d'une cellule solaire multi-jonction intégrée sur Si. Tout d'abord, nous développons la croissance et fabrication de cellules homo-épitaxiales en GaSb. Les caractéristiques tension-intensité (J-V) mesurées sont proches de l'état de l'art avec une efficacité sous un soleil de 5.9 %. Puis, nous intégrons une cellule à simple jonction GaSb sur un substrat de Si par épitaxie par jet moléculaire (EJM). Les analyses de diffraction X (DRX) et de microscopie à force atomique (AFM) montrent des propriétés de structure et morphologie proches de celles reportées pour des buffers métamorphiques similaires dans la littérature. Nous adaptons alors la configuration de la cellule pour éviter la haute densité de défauts à l'interface GaSb/Si. La cellule hétéro-épitaxiale a une efficacité réduite de 0.6 %. Ce résultat est néanmoins proche des dernières avancées sur les cellules GaSb sur GaAs, et ce, malgré un désaccord de maille plus important. Enfin, nous étudions l'épitaxie d'AlInAsSb. Cet alliage pourrait en théorie atteindre une grande gamme d'énergies de bande interdite tout en restant accordé sur GaSb. Néanmoins, il souffre d'une lacune de miscibilité importante, le rendant sujet à la ségrégation de phase. Il n'y a que peu de mentions de l'AlInAsSb dans la littérature, et toutes rapportent des conditions de croissance instables et des énergies de bande interdite plus basses qu'attendues. Nous réussissons à produire des couches de bonne qualité d'AlInAsSb dont la composition en Al varie de 0.25 à 0.75 et ne présentant aucun signe macroscopique de décomposition de phase. Toutefois, l'observation au microscope à transmission électronique (TEM) révèle des fluctuations de composition nanométriques. Les données de photoluminescence (PL) sont étudiées pour déterminer les propriétés électroniques de l'alliage. Les mesures d'efficacité quantique (QE) montrent que la sous-cellule du haut limite la performance de la cellule tandem. Des modélisations numériques des courbes J-V et QE sont utilisées pour identifier des pistes d'amélioration pour chaque brique élémentaire. / III-Sb materials have demonstrated their potential for multiple opto-electronic devices, with applications stretching from communications to environment. However, they remain an almost unexplored segment for classical photovoltaic systems. In this research, we intend to demonstrate that III-Sb-based devices are promising candidates for high-efficiency, low-cost solar cells. Their benefits are two-fold: not only do they offer a wide range of lattice-matched alloys and low-resistivity tunnel junctions, but they also enable direct growth on Si substrates. We thus investigate the building blocks of a GaSb-based multi-junction solar cell integrated onto Si. First, we develop the photovoltaic growth and processing by fabricating homo-epitaxial GaSb cells. Intensity-voltage (J-V) measurements approach the state of the art with 1-sun efficiency of 5.9%. Then, we integrate a GaSb single-junction cell on a Si substrate by molecular beam epitaxy (MBE). X-ray diffraction (XRD) and atomic force microscopy (AFM) analysis show structural and morphological properties close to the best reported in the literature for similar metamorphic buffers. We further adapt the cell configuration to circumvent the high defect density at the GaSb/Si interface. The heteroepitaxial cell results in a reduced efficiency of 0.6%. Nevertheless, this performance is close the most recent advancements on GaSb heteroepitaxial cells on GaAs, despite a much larger mismatch. Last, we investigate the epitaxy of AlInAsSb. This alloy could in theory reach the widest range of bandgap energies while being lattice-matched to GaSb. However, it presents a large miscibility gap, making it vulnerable to phase segregation. AlInAsSb only counts few experimental reports in the literature, all referring to unoptimized growth conditions and abnormally low bandgap energies. We successfully grow good-quality layers with Al composition x_{Al} ranging from 0.25 to 0.75, showing no macroscopic sign of decomposition. Yet, transmission electron microscopy (TEM) observations point to nanometric fluctuations of the quaternary composition. Photoluminescence (PL) data is studied to determine the alloy's electronic properties. We eventually propose and fabricate a tandem cell structure, resulting in 5.2% efficiency. Quantum Efficiency (QE) measurements reveal that the top subcell is limiting the tandem performance. Numerical fits to both J-V and QE data indicate improvement paths for each building block.
2

Design, Growth, and Characterization of III-Sb and III-N Materials for Photovoltaic Applications

January 2019 (has links)
abstract: Photovoltaic (PV) energy has shown tremendous improvements in the past few decades showing great promises for future sustainable energy sources. Among all PV energy sources, III-V-based solar cells have demonstrated the highest efficiencies. This dissertation investigates the two different III-V solar cells with low (III-antimonide) and high (III-nitride) bandgaps. III-antimonide semiconductors, particularly aluminum (indium) gallium antimonide alloys, with relatively low bandgaps, are promising candidates for the absorption of long wavelength photons and thermophotovoltaic applications. GaSb and its alloys can be grown metamorphically on non-native substrates such as GaAs allowing for the understanding of different multijunction solar cell designs. The work in this dissertation presents the molecular beam epitaxy growth, crystal quality, and device performance of AlxGa1−xSb solar cells grown on GaAs substrates. The motivation is on the optimization of the growth of AlxGa1−xSb on GaAs (001) substrates to decrease the threading dislocation density resulting from the significant lattice mismatch between GaSb and GaAs. GaSb, Al0.15Ga0.85Sb, and Al0.5Ga0.5Sb cells grown on GaAs substrates demonstrate open-circuit voltages of 0.16, 0.17, and 0.35 V, respectively. In addition, a detailed study is presented to demonstrate the temperature dependence of (Al)GaSb PV cells. III-nitride semiconductors are promising candidates for high-efficiency solar cells due to their inherent properties and pre-existing infrastructures that can be used as a leverage to improve future nitride-based solar cells. However, to unleash the full potential of III-nitride alloys for PV and PV-thermal (PVT) applications, significant progress in growth, design, and device fabrication are required. In this dissertation, first, the performance of ii InGaN solar cells designed for high temperature application (such as PVT) are presented showing robust cell performance up to 600 ⁰C with no significant degradation. In the final section, extremely low-resistance GaN-based tunnel junctions with different structures are demonstrated showing highly efficient tunneling characteristics with negative differential resistance (NDR). To improve the efficiency of optoelectronic devices such as UV emitters the first AlGaN tunnel diode with Zener characteristic is presented. Finally, enabled by GaN tunnel junction, the first tunnel contacted InGaN solar cell with a high VOC value of 2.22 V is demonstrated. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019

Page generated in 0.0271 seconds