Return to search

Middleware and programming models for multi-robot systems / Intergicielles et modèles de programmation pour les systèmes multi-robots

Malgré de nombreuses années de travail en robotique, il existe toujours un manque d’architecture logicielle et de middleware stables pour les systèmes multi-robot. Un intergiciel robotique devrait être conçu pour faire abstraction de l’architecture matérielle de bas niveau, faciliter la communication et l’intégration de nouveaux logiciels. Cette thèse se concentre sur le middleware pour systèmes multi-robot et sur la façon dont nous pouvons améliorer les frameworks existantes dans un contexte multi-robot en ajoutant des services de coordination multi-robot, des outils de développement et de déploiement massif. Nous nous attendons à ce que les robots soient de plus en plus utiles car ils peuvent tirer profit des données provenant d’autres périphériques externes dans leur prise de décision au lieu de simplement réagir à leur environnement local (capteurs, robots coopérant dans une flotte, etc.). Cette thèse évalue d’abord l’un des intergiciels les plus récents pour robot(s) mobile(s), Robot operating system (ROS), suivi par la suite d’un état de l’art sur les middlewares couramment utilisés en robotique. Basé sur les conclusions, nous proposons une contribution originale dans le contexte multi-robots, appelé SDfR (Service discovery for Robots), un mécanisme de découverte des services pour les robots. L’objectif principal est de proposer un mécanisme permettant aux robots de garder une trace des pairs accessibles à l’intérieur d’une flotte tout en utilisant une infrastructure ad-hoc. A cause de la mobilité des robots, les techniques classiques de configuration de réseau pair à pair ne conviennent pas. SDfR est un protocole hautement dynamique, adaptatif et évolutif adapté du protocole SSDP (Simple Service Discovery Protocol). Nous conduisons un ensemble d’expériences, en utilisant une flotte de robots Turtlebot, pour mesurer et montrer que le surdébit de SDfR est limité. La dernière partie de la thèse se concentre sur un modèle de programmation basé sur un automate temporisé. Ce type de programmation a l’avantage d’avoir un modèle qui peut être vérifié et simulé avant de déployer l’application sur de vrais robots. Afin d’enrichir et de faciliter le développement d’applications robotiques, un nouveau modèle de programmation basé sur des automates à états temporisés est proposé, appelé ROSMDB (Robot Operating system Model Driven Behaviour). Il fournit une vérification de modèle lors de la phase de développement et lors de l’exécution. Cette contribution est composée de plusieurs composants : une interface graphique pour créer des modèles basés sur un automate temporisé, un vérificateur de modèle intégré basé sur UPPAAL et un générateur de squelette de code. Enfin, nous avons effectué deux expériences : une avec une flotte de drones Parrot et l’autre avec des Turtlebots afin d’illustre le modèle proposé et sa capacité à vérifier les propriétés. / Despite many years of work in robotics, there is still a lack of established software architecture and middleware for multi-robot systems. A robotic middleware should be designed to abstract the low-level hardware architecture, facilitate communication and integration of new software. This PhD thesis is focusing on middleware for multi-robot system and how we can improve existing frameworks for fleet purposes by adding multi-robot coordination services, development and massive deployment tools. We expect robots to be increasingly useful as they can take advantage of data pushed from other external devices in their decision making instead of just reacting to their local environment (sensors, cooperating robots in a fleet, etc). This thesis first evaluates one of the most recent middleware for mobile robot(s), Robot operating system (ROS) and continues with a state of the art about the commonly used middlewares in robotics. Based on the conclusions, we propose an original contribution in the multi-robot context, called SDfR (Service discovery for Robots), a service discovery mechanism for Robots. The main goal is to propose a mechanism that allows highly mobile robots to keep track of the reachable peers inside a fleet while using an ad-hoc infrastructure. Another objective is to propose a network configuration negotiation protocol. Due to the mobility of robots, classical peer to peer network configuration techniques are not suitable. SDfR is a highly dynamic, adaptive and scalable protocol adapted from Simple Service Discovery Protocol (SSDP). We conduced a set of experiments, using a fleet of Turtlebot robots, to measure and show that the overhead of SDfR is limited. The last part of the thesis focuses on programming model based on timed automata. This type of programming has the benefits of having a model that can be verified and simulated before deploying the application on real robots. In order to enrich and facilitate the development of robotic applications, a new programming model based on timed automata state machines is proposed, called ROSMDB (Robot Operating system Model Driven Behaviour). It provides model checking at development phase and at runtime. This contribution is composed of several components: a graphical interface to create models based on timed automata, an integrated model checker based on UPPAAL and a code skeleton generator. Moreover, a ROS specific framework is proposed to verify the correctness of the execution of the models and to trigger alerts. Finally, we conduct two experiments: one with a fleet of Parrot drones and second with Turtlebots in order to illustrates the proposed model and its ability to check properties.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEI018
Date15 March 2018
CreatorsChitic, Stefan-Gabriel
ContributorsLyon, Simonin, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds