Return to search

On Active Secondary Suspension in Rail Vehicles to Improve Ride Comfort

One way to make rail vehicles a competitive means of transportation is to increase running speed. However, higher speeds usually generate increased forces and accelerations on the vehicle, which have a negative effect on ride comfort. With conventional passive suspension, it may be difficult to maintain acceptable passenger comfort. Therefore, active technology in the secondary suspension can be implemented to improve, or at least maintain, ride comfort at increased vehicle speeds or when track conditions are unfavourable. This thesis describes the development of an active secondary suspension concept to improve ride comfort in a high-speed train. Firstly, an active lateral secondary suspension system (ALS) was developed, including dynamic control of the lateral and yaw modes of the carbody. Furthermore, quasi-static lateral carbody control was included in the suspension system in order to laterally centre the carbody above the bogies in curves at high track plane acceleration and hence to avoid bumpstop contact. By means of simulations and on-track tests, it is shown that the ALS system can offer significant lateral ride comfort improvements compared to a passive system. Two different control strategies have been studied—the relatively simple sky-hook damping and the multi-variable H∞ control—using first a quarter-car and then a full-scale vehicle model. Simulation results show that significant ride comfort improvements can be achieved with both strategies compared to a passive system. Moreover, H∞ control in combination with the carbody centring device is better at reducing the relative lateral displacement in transition curves compared to sky-hook damping. Secondly, an active vertical secondary suspension system (AVS) was developed, using simulations. Dynamic control of the vertical and roll modes of the carbody, together with quasi-static roll control of the carbody, show significant vertical ride comfort improvements and allow higher speeds in curves. Further, the AVS system compensates for negative ride comfort effects if the structural stiffness of the carbody is reduced and if the vertical air spring stiffness is increased. Finally, the two active suspension systems (ALS and AVS) were combined in simulations. The results show that both lateral and vertical ride comfort is improved with the active suspension concept at a vehicle speed of 250 km/h, compared to the passive system at 200 km/h. Further, active suspension in one direction does not affect the other direction. The ALS system has been included in two recent orders comprising more than 800 cars. / QC 20111205 / Gröna Tåget

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-49880
Date January 2011
CreatorsOrvnäs, Anneli
PublisherKTH, Spårfordon, KTH, Järnvägsgruppen, JVG, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-AVE, 1651-7660 ; 2011:79

Page generated in 0.0023 seconds