Este trabalho propõe uma nova abordagem, baseada em wavelets, para o método Multigrid Algébrico (WAMG). Nesta nova abordagem, a Transformada Discreta Wavelet é aplicada na matriz de coeficientes do sistema linear gerando uma aproximação dessa matriz em cada nível do processo de multiresolução. As vantagens da nova abordagem, que incluem maior facilidade de paralelização e menor tempo de montagem, são apresentadas com detalhes e uma análise quantitativa de convergência do método WAMG é realizada a partir da sua aplicação em problemas testes. O WAMG também é testado como pré- condicionador para métodos iterativos no subespaço de Krylov na análise magnetostática e magnetodinâmica (regime permanente senoidal) pelo Método dos Elementos Finitos, e em matrizes esparsas extraidas das coleções Matrix Market e da Universidade da Flórida. São apresentados resultados numéricos comparando o WAMG com o Multigrid Algébrico tradicional e com os pré-condicionadores baseados em decomposições incompletas de Cholesky e LU. / In this work we propose a wavelet-based algebraic multigrid method (WAMG) as a linear system solver as well as a prediconditioner for Krylov subspace methods. It is a new approach for the Algebraic Multigrid method (AMG), which considers the use of Discrete Wavelet Transform (DWT) in the construction of a hierarchy of matrices. The two-dimensional DWT is applied to produce an approximation of the matrix in each level of the wavelets multiresolution decomposition process. The main advantages of this new approach are presented and a quantitative analysis of its convergence is shown after its application in some test problems. The WAMG also is tested as a preconditioner for Krylov subspace methods in problems with sparse matrices, in nonlinear magnetic field problems and in 3D time-harmonic Electromagnetic Edge-based Finite Element Analysis. Numerical results are presented comparing the WAMG with the standard Algebraic Multigrid method and with the preconditioners based on the incomplete Cholesky and LU decompositions.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22072007-212201 |
Date | 14 February 2007 |
Creators | Pereira, Fábio Henrique |
Contributors | Nabeta, Silvio Ikuyo |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0029 seconds