Konfliktprediktering handlar om att bedöma risken för våld i ett geografiskt område vid en given tid. Uppgiften lämpar sig bra för datorer som med hjälp av matematiska modeller kan hitta mönster i stora mängder data. Att prediktera konflikthändelser går att göra med olika metoder. Syftet med studien var att utvärdera multilayer perceptron (MLP), en typ av artificiella neuronnät, som metod för konfliktprediktering i relation till två andra metoder. I studien beskrivs hur MLP-neuronnätet konstruerades och hur prestationsmått togs fram för dess prediktioner. De värdena jämfördes senare med prestationsmått från andra studier för de två andra metoderna. Prediktionerna grundade sig på data om konflikthändelser, samt ekonomiska och demografiska faktorer för länder i världen. Jämförelsen visade att MLP är användbar som metod för konfliktprediktering och hade, under de förutsättningar som rådde, i viktiga avseenden högre prediktiv förmåga än de andra metoderna. Studien presenterar även fyra faktorer som kan påverka vilken modelleringsmetod som en modellerare borde använda för konfliktprediktering.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-413549 |
Date | January 2020 |
Creators | Lindstedt, Henrik |
Publisher | Uppsala universitet, Institutionen för informatik och media |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds