INTRODUCTION: Multiple myeloma (MM) is a disease that results in the production of ineffective immunoglobulins and monoclonal proteins in the blood and urine, leading to insufficient organ function or death. Currently, there is a 5-year survival rate of 47% for patients diagnosed with MM, with a proportion of patients ultimately succumbing to the disease. The current standard of care for MM includes toxic combinations of chemotherapy. The evolution of chimeric antigen receptor (CAR) T-cell therapy for hematologic cancers such as lymphoma, leukemia, and now myeloma has provided another effective treatment option for patients who have relapsed after standard treatments for MM. Idecabtagene Vicleucel (ide-cel), was approved in March 2021 for patients with relapsed and refractory MM. While CAR T-cell treatment appears to be far less toxic than standard chemotherapy, this therapy comes with its own associated toxicities, mainly cytokine release syndrome (CRS) and neurotoxicity (NT). In clinical trials, ide-cel demonstrated to be an effective treatment in some patients, leading to the FDA approval for patients who have exhausted multiple other lines of therapy. Currently, it is unclear why patients respond differently to CAR T-cell treatment and why some patients present with more severe toxicity than others. Therefore, this study aims to examine patient factors such as demographics, age, and treatment history to determine if such characteristics may influence the CAR T-cell response; also, we assess the efficacy of ide-cel in a real-world experience outside of a clinical trial. METHODS: In this study, 14 patients’ medical records were reviewed after receiving commercial CAR T-cell therapy between August 2021 and January 2022. Eligible patients for the therapy were determined by strict inclusion criteria, including having a confirmed diagnosis of MM and exhausting at least four prior lines of therapy, as well as exclusion criteria, such as excluding individuals who have received CAR T-cells prior in a clinical trial setting. Approximately one month before preparation lymphodepletion chemotherapy, eligible patients underwent leukapheresis and had their blood sent to a laboratory to extract T-cells and genetically modify them to express the CAR for reinfusion. On 3 and 5 days prior to CAR T-cell infusion, patients underwent lymphodepletion using fludarabine and cyclophosphamide. Patients remained in the hospital for approximately one week following infusion, pending adverse reactions. After discharge, patients returned to the hospital for routine follow-ups. Data analysis was then performed on collected clinical readouts such as: prior treatments, bone marrow biopsies, response rates, laboratory values from blood samples, and pre- and post-infusion scans of various tissues within the body. RESULTS: At a median follow-up time of 15 weeks, six patients (43%) achieved a complete response (CR), three patients demonstrated a partial response (PR, 21%), and four patients showed disease progression (PD, 28%). Post-infusion scans were not available for one subject (7%) as they were still in the hospital. These results are similar to the phase I and phase II trials in which 45% and 33% of patients demonstrated a CR post-infusion, respectively. As for associated toxicities, 10 patients (71%) experienced CRS and one patient (7%) presented with ICANS. All patients that achieved a CR experienced ide-cel related toxicities, compared with only 38% of those with less favorable or unknown outcomes, which indicates that systemic immune system activation which causes CRS may be required to achieve a CR but CRS is not always linked with a CR outcome. There were 28 different chemotherapy regimens used as the standard of care treatment prior to ide-cel therapy. We assessed the most recent chemotherapeutic regimen in each patient to assess whether there is an association with most recent treatment and response. Of the six patients that achieved a CR to ide-cel, all were previously treated with RVD or CyBorD regimens, compared to the four patients who had disease progression who were mainly treated with salvage DCEP chemotherapy. Four patients (29%) received DCEP as their final chemotherapy regimen, and 3 of these 4 (75%) demonstrated progressive disease after ide-cel. Two patients received Belantamab-Mafodotin prior to ide-cel treatment, with one patient presenting with disease progression and the other patient achieving CR. 71% of patients experienced CRS following ide-cel infusion, which is resembles the phase II trial of ide-cel in which 84% of patients demonstrated CRS. In this study, only 7% of patients experienced neurological toxicity, which is comparable to the 18% of patients that demonstrated to have ICANS in the phase II study. CONCLUSIONS: We found similar performance of the ide-cel CAR-T therapy in the real world setting as in the clinical trial. Also, the complete responses were achieved by subjects with an array of characteristics, including varying recent chemotherapeutic treatments, IgG, IgA, and light-chain only subtypes of MM, and diverse demographics and other characteristics. The characteristic that demonstrated the most predictability and somewhat unique to subjects with CR was the associated toxicities from ide-cel. Development of these associated toxicities may attest that substantial immune activation, of CAR T-cells and other immune cells, leads to the efficacy of the product in eliminating cancer cells. Further analysis will need to be completed as more individuals enroll in this study to be able to determine if there are significant associations between demographics and prior lines of treatment with response to ide-cel CAR-T therapy. Lastly, future studies should assess the immune cell effector functions that are generated in CR patients that will help to specify the association between ide-cel activation, experienced associated toxicities, and its efficacy.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/45549 |
Date | 31 January 2023 |
Creators | Canonico, Dalton |
Contributors | Snyder-Cappione, Jennifer, Nadeem, Omar |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0029 seconds