Return to search

Solving Multiple Objective Optimization Problem using Multi-Agent Systems: A case in Logistics Management

Background: Multiple Objective Optimization problems(MOOPs) are common and evident in every field. Container port terminals are one of the fields in which MOOP occurs. In this research, we have taken a case in logistics management and modelled Multi-agent systems to solve the MOOP using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Objectives: The purpose of this study is to build AI-based models for solving a Multiple Objective Optimization Problem occurred in port terminals. At first, we develop a port agent with an objective function of maximizing throughput and a customer agent with an objective function of maximizing business profit. Then, we solve the problem using the single-objective optimization model and multi-objective optimization model. We then compare the results of both models to assess their performance. Methods: A literature review is conducted to choose the best algorithm among the existing algorithms, which were used previously in solving other Multiple Objective Optimization problems. An experiment is conducted to know how well the models performed to solve the problem so that all the participants are benefited simultaneously. Results: The results show that all three participants that are port, customer one and customer two have gained profits by solving the problem in multi-objective optimization model. Whereas in a single-objective optimization model, a single participant has achieved earnings at a time, leaving the rest of the participants either in loss or with minimal profits. Conclusion: We can conclude that multi-objective optimization model has performed better than the single-objective optimization model because of the impartial results among the participants.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-20745
Date January 2020
CreatorsPennada, Venkata Sai Teja
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds