Return to search

Towards practical design of impulse radio ultrawideband systems: Parameter estimation and adaptation, interference mitigation, and performance analysis

Ultrawideband (UWB) is one of the promising technologies for future short-range high data rate communications (e.g. for wireless personal area networks) and longer range low data rate communications (e.g. wireless sensor networks).Despite its various advantages and potentials (e.g. low-cost circuitry, unlicensed reuse of licensed spectrum, precision ranging capability etc.), UWB also has its own challenges. The goal of this dissertation is to identify and address some of those challenges, and provide a framework for practical UWB transceiver design.In this dissertation, various modulation options for UWB systems are reviewed in terms of their bit error rate (BER) performances, spectral characteristics, modem and hardware complexities, and data rates. Time hopping (TH) code designs for both synchronous (introduced an adaptive code assignment technique) and asynchronous UWB impulse radio (IR) systems are studied. An adaptive assignment of two different multiple access parame
ters (number of pulses per symbol and number of pulse positions per frame)is investigated again considering both synchronous and asynchronous scenarios, and a mathematical framework is developed using Gaussian approximations of interference statistics for different scenarios. Channel estimation algorithms for multiuser UWB communication systems using symbol-spaced (proposed a technique that decreases the training size), frame-spaced (proposed a pulse-discarding algorithm for enhanced estimationperformance), and chip-spaced (using least squares (LS) estimation) sampling are analyzed.A comprehensive review on multiple accessing andinterference avoidance/cancellation for IR-UWB systems is presented.BER performances of different UWB modulation schemes in the presence of timing jitter are evaluated and compared in static and multipath fading channels, and finger estimation error, effects of jitter distribution, and effects of pulse shape are investigated. A unified performance analysis app
roach for different IR-UWB transceiver types (stored-reference, transmitted-reference, and energy detector) employing various modulation options and operating at sub-Nyquist sampling rates is presented. The time-of-arrival (TOA) estimation performance of different searchback schemesunder optimal and suboptimal threshold settings are analyzed both for additive white Gaussian noise (AWGN) and multipath channels.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-3540
Date01 June 2006
CreatorsGüvenç, İsmail
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0022 seconds