Return to search

Serum response factor-dependent regulation of smooth muscle gene transcription

Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/4602
Date07 July 2014
CreatorsChen, Meng
ContributorsHerring, B. Paul, Gallagher, Patricia J., Petrache, Irina, Rhodes, Simon J., Tune, Johnathan D.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds