• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serum response factor-dependent regulation of smooth muscle gene transcription

Chen, Meng 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.
2

Coronary artery disease progression and calcification in metabolic syndrome

McKenney, Mikaela Lee January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / For years, the leading killer of Americans has been coronary artery disease (CAD), which has a strong correlation to the U.S. obesity epidemic. Obesity, along with the presence of other risk factors including hyperglycemia, hypercholesterolemia, dyslipidemia, and high blood pressure, comprise of the diagnosis of metabolic syndrome (MetS). The presentation of multiple MetS risk factors increases a patients risk for adverse cardiovascular events. CAD is a complex progressive disease. We utilized the superb model of CAD and MetS, the Ossabaw miniature swine, to investigate underlying mechanisms of CAD progression. We studied the influence of coronary epicardial adipose tissue (cEAT) and coronary smooth muscle cell (CSM) intracellular Ca2+ regulation on CAD progression. By surgical excision of cEAT from MetS Ossabaw, we observed an attenuation of CAD progression. This finding provides evidence for a link between local cEAT and CAD progression. Intracellular Ca2+ is a tightly regulated messenger in CSM that initiates contraction, translation, proliferation and migration. When regulation is lost, CSM dedifferentiate from their mature, contractile phenotype found in the healthy vascular wall to a synthetic, proliferative phenotype. Synthetic CSM are found in intimal plaque of CAD patients. We investigated the changes in intracellular Ca2+ signaling in enzymatically isolated CSM from Ossabaw swine with varying stages of CAD using the fluorescent Ca2+ indicator, fura-2. This time course study revealed heightened Ca2+ signaling in early CAD followed by a significant drop off in late stage calcified plaque. Coronary artery calcification (CAC) is a result of dedifferentiation into an osteogenic CSM that secretes hydroxyapatite in the extracellular matrix. CAC is clinically detected by computed tomography (CT). Microcalcifications have been linked to plaque instability/rupture and cannot be detected by CT. We used 18F-NaF positron emission tomography (PET) to detect CAC in Ossabaw swine with early stage CAD shown by mild neointimal thickening. This study validated 18F-NaF PET as a diagnostic tool for early, molecular CAC at a stage prior to lesions detectable by CT. This is the first report showing non-invasive PET resolution of CAC and CSMC Ca2+ dysfunction at an early stage previously only characterized by invasive cellular Ca2+ imaging.

Page generated in 0.0598 seconds