Nous étudions deux thématiques principales : l'homométrie non-commutative dans des produits semi-directs, et une notion de distance entre accords musicaux. deux melodies sont dites homométriques si elles possèdent le même ensemble d'intervalles : nous transposons cette notion a un enchainement d'accords et plus généralement a des produits semi-directs, ce qui permet d'élaborer un cadre pour l'étude de l'homométrie dans des groupes non-commutatifs, tels que le groupe diédral. nous définissons dans une deuxième partie une mesure de distances entre des accord musicaux n'ayant pas le même nombre de notes, a partir d'une distance basée sur le concept de voice-leading. / We study two main topics: non-commutative homometry and the notion of distance between musical chords. Two melodies are homometric if they share the same set of intervals. We transpose this notion to a chord sequence and more generally to semi-direct products, which allows to build a framework for the general study of homometry in non-commutative groups, such as the dihedral group. In the second part we define a mesure of distance between musical chords of different cardinalities, from a distance based on the notion of voice-leading.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066576 |
Date | 20 September 2017 |
Creators | Genuys, Grégoire |
Contributors | Paris 6, Allouche, Jean-Paul, Andreatta, Moreno |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds