Return to search

Mutational analysis of the PacC binding sites within the aflR promoter in Aspergillus flavus

It is generally known that media containing simple sugars (sucrose, glucose) and organic nitrogen sources (ammonium) when buffered to acidic pH stimulates aflatoxin production in Aspergillus flavus & A. parasiticus while lactose, nitrate and an alkaline pH inhibit aflatoxin biosynthesis. It has been shown that pH of the growth medium is the most important regulatory factor for aflatoxin biosynthesis since media containing stimulatory carbon and/or nitrogen sources (sucrose and ammonia) do not enhance aflatoxin (or sterigmatocystin) production at alkaline pH. RNA interference (in A. flavus) of the pH regulatory transcription factor, PacC, resulted in aflatoxin production under acidic and alkaline pH conditions whilst wildtype Aspergillus flavus produced aflatoxins only under acidic conditions. This conclusively proved that PacC negatively regulates aflatoxin production at alkaline pH in A. flavus. However the exact mechanism involved in PacC repression of aflatoxin biosynthesis at alkaline pH still remains unknown. The AflR protein is essential for expression of several genes in the aflatoxin biosynthetic cluster. In the current study, sequence analysis of the aflR promoter indicated the presence of two putative PacC binding sites within the aflR promoter of A. flavus 3357WT located at positions -162 and -487 bp from the start codon. The presence of the PacC binding sites in the aflR promoter indicated a possible link between aflR expression and PacC regulation under alkaline conditions. Thus, in this study, it was hypothesized that at alkaline pH, PacC inhibits aflR expression by binding to one or both of the PacC binding sites within the aflR promoter. This in turn, would result in inhibition of aflatoxin biosynthesis since expression of several aflatoxin biosynthetic pathway genes is dependent on activation by AflR. The aim and objective of this study was to test the validity of this hypothesis i.e. that at alkaline pH PacC binds to one or both of its recognition sites within the aflR promoter thereby inhibiting aflR expression which subsequently would result in inhibition of aflatoxin biosynthesis. This was done by first mutating each individual and then both PacC binding sites in the A. flavus 3357 aflR promoter via Single-Joint PCR (SJ-PCR) and fusing the wildtype and each mutated aflR promoter to the Green Fluorescent Protein (gfp) gene and the trpC terminator to yield a functional expression vector. These constructs were then transformed into A. flavus 3357.5. Positive transformants were confirmed to express GFP by fluorescence microscopy and spectrofluorometry. Quantification of GFP protein levels of the various transformants in this study indicated that PacC negatively regulated aflR promoter activity at alkaline pH. RT-qPCR was performed on positive transformants after growth on SLS medium at acidic and alkaline pH to determine if PacC negatively regulated aflR promoter activity at alkaline pH and to determine whether PacC binds preferentially to one or both recognition sites within the aflR promoter. RT-qPCR analysis suggest that PacC binds non-preferentially to both recognition sites within the aflR promoter on sucrose and lactose media at alkaline pH, although mutation of PacC binding site 2 results in a slightly higher expression compared to mutation of PacC binding site 1. Increasing the concentration of an aflatoxin conducive nitrogen source stimulated aflR promoter activity but this was not sufficient to overcome negative regulation by PacC. It is generally known that repression of aflR expression results in repression of aflatoxin biosynthesis irrespective of pH. The results of this study strongly suggest that PacC negatively regulates aflR promoter activity at alkaline pH by binding to one or both PacC recognition sites within the aflR promoter. Since aflR promoter activity is repressed by PacC at alkaline pH, this substantiates the hypothesis that PacC represses aflatoxin biosynthesis by inhibiting expression of aflR. Furthermore, the results of this study indicated that there may be some PacC protein present in the active form at acidic pH irrespective of the carbon source and nitrogen source used in the growth medium. RT-qPCR analysis indicated that any active PacC present at acidic pH may cause repression of the aflR promoter based on the position of the PacC binding site relative to the aflR start codon, although it appears that PacC may have a higher affinity for PacC binding site 2 (which is closer to the aflR start codon).

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10336
Date January 2011
CreatorsSuleman, Essa
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Formatxix, 151 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.002 seconds