Return to search

Développement d'une approche de thérapie génique de la dystrophie musculaire de Duchenne en utilisant la technologie CRISPR-Cas9 Prime editing

Titre de l'écran-titre (visionné le 29 juin 2023) / La Dystrophie Musculaire de Duchenne (DMD) est une maladie neuromusculaire héréditaire causée par des mutations dans le gène DMD codant pour la dystrophine, une protéine importante dans le maintien de l'intégrité de la membrane des fibres musculaires. L'absence de la dystrophine se manifeste par la dégénérescence progressive des fibres musculaires à l'effort. La DMD représente un fardeau pour les patients et leurs familles. Elle affecte environ 20 000 nouveaux nés de sexe masculin dans le monde chaque année. Il existe plusieurs approches thérapeutiques allant du ciblage de l'ARNm au remplacement ou substitution de la dystrophine. Cependant, ces traitements sont transitoires et induisent des améliorations phénotypiques limitées. La découverte il y a une dizaine d'années du système CRISPR-Cas a ouvert des possibilités presque illimitées en biologie. Ce système a été modifié et adapté en 2019 pour développer le Prime editing, une technologie dynamique de modification du génome. Cette technologie permet de faire une interconversion de tout nucléotide du génome, des insertions ou des délétions de nucléotides. Le système d'édition est constitué d'un plasmide éditeur (PE2) fait d'une Cas9 nickase fusionnée à une transcriptase inverse et d'un plasmide contenant un ARN guide pour le Prime editing (pegRNA) contenant une séquence espaceur, une séquence d'amorçage et une matrice pour la transcriptase inverse (RTT). Notre étude visait donc à utiliser cette technologie CRISPR-Cas9 Prime editing pour développer une approche de traitement permanent de la DMD. Les deux premiers chapitres de cette thèse présentent de façon approfondie l'état de la littérature actuelle sur les différentes approches thérapeutiques de la DMD. Le premier chapitre décrit les stratégies moléculaires médiant la restauration de la dystrophine. Ces approches incluent la lecture à travers les codons, les sauts d'exons, la modification de l'ADN par la technique CRISPR, la modulation des progéniteurs, le remplacement et la substitution du gène DMD ainsi que la transplantation cellulaire. Le deuxième chapitre apporte plus de détails et de précisions sur les approches CRISPR en développement pour la DMD permettant ainsi de mieux comprendre la pertinence de notre choix technologique (CRISPR-Cas9 Prime editing) pour l'approche que nous avons développé dans cette thèse. Le troisième chapitre de cette thèse vise à démontrer la capacité du Prime editing à introduire ou corriger des mutations ponctuelles dans le gène DMD et permettre l'expression de la protéine dystrophine complète. Initialement, nous avons conçu plusieurs pegRNAs pour introduire les mutations nonsenses présentes dans la population canadienne dans les exons 6, 9, 20, 35, 43, 55 et 61 du gène DMD. Suite à des taux d'édition très faibles variant entre 2 et 10%, plusieurs optimisations dont, les traitements répétés consécutifs, l'usage d'un guide supplémentaire pour induire une autre coupure de l'autre brin d'ADN à distance du site de coupure initial, et l'ajout d'une mutation simultanée dans la séquence adjacente au protoespaceur (PAM) pour préserver la mutation induite, ont permis d'augmenter jusqu'à 5,8 fois le taux d'édition. Ces stratégies ont permis par la suite de corriger la mutation c.428 G>A dans l'exon 6 des myoblastes d'un patient suivi par l'expression de la dystrophine détectée par western blot à partir des protéines provenant de la fusion des myoblastes en myotubes. Le séquençage haut débit analysé par CRISPResso2 a montré un taux d'INDEL inférieur à 1%. Le quatrième chapitre de cette thèse vise à démontrer la capacité du Prime editing à corriger efficacement la mutation c.8713C>T dans l'exon 59 du gène DMD dont la position à +13 nucléotides du site de coupure la rend défavorable pour la correction par Prime editing. Plusieurs variants de PE2 ont été testés et le meilleur variant (SpCas9-NGG) a été choisi pour la suite des expériences. Ajoutées aux optimisations du chapitre 3 précédent, la variation de la longueur du RTT et des mutations synonymes supplémentaires à différentes positions de la cible ont permis d'augmenter jusqu'à 7 fois le taux d'édition. Cette autre stratégie a été utilisée pour la correction de la mutation c.8713C>T dans l'exon 59 des myoblastes d'un patient à un taux de 22% suivi par l'expression de la dystrophine (42%). Le cinquième chapitre de cette thèse a permis de démontrer la capacité du Prime editing à effectuer en plus des substitutions, des délétions et des insertions de nucléotides dans les sites d'épissages afin de médier un saut d'exon et restaurer l'expression de la dystrophine. La stratégie consistait à corriger dans les myoblastes de patients, les mutations causées par les délétions de l'exon 52 et des exons 45-52 en modifiant respectivement les sites donneurs d'épissage des exons 51 et 53 pour les éliminer. Cela a permis la jonction respective de l'exon 50 à l'exon 53 et de l'exon 44 à l'exon 54 pour les délétions 52 et 45-52 respectivement. Ces modifications des sites d'épissage ont permis l'expression de la protéine dystrophine. Ces résultats sont une preuve de principe et démontrent le potentiel de notre approche à modifier efficacement le gène DMD pour médier la restauration de l'expression de la dystrophine chez les patients DMD. Cependant, il sera important de développer un système de livraison efficace en utilisant par exemple un vecteur Dual-AAV ou des particules virales VLPs ayant respectivement des capsides ou des glycoprotéines spécifiques des muscles squelettiques et cardiaques pour un essai in vivo de ces stratégies. Il sera également pertinent de développer une approche Prime editing multiplexe afin de cibler simultanément plusieurs mutations du gène DMD et examiner les effets hors cibles et immunologiques de cette dernière. / Duchenne Muscular Dystrophy (DMD) is an inherited neuromuscular disease caused by mutations in the DMD gene encoding dystrophin, a protein involved in maintaining muscle fibers membrane integrity. The absence of dystrophin leads to a progressive muscle wasting due to muscle contractions. DMD represents a burden for patients and their families. It affects approximately 20,000 newborn males worldwide each year. There are several therapeutic approaches ranging from mRNA targeting to dystrophin replacement or substitution. However, these treatments are transient and induce limited phenotypic improvements. The discovery a decade ago of CRISPR-Cas system opened almost unlimited possibilities in biology. This system was modified and adapted in 2019 to develop the Prime editing, a dynamic genome editing technology. That technology makes possible the interconversion of any nucleotide of the genome, and the insertions or deletions of nucleotides. The editing system consists of a prime editor plasmid (PE2) made of a Cas9 nickase fused to a reverse transcriptase and a plasmid encoding a Prime editing guide RNA (pegRNA) containing a spacer sequence, a primer binding site (PBS) sequence and a reverse transcriptase template (RTT). Our study therefore aimed to use this CRISPR-Cas9 Prime editing technology to develop a permanent treatment approach for DMD. The first and second chapters of this thesis present in depth the state of the current literature on the different DMD therapeutic approaches. The first chapter describes the molecular strategies involved in the dystrophin restoration. These approaches include read through codon, exon skipping, CRISPR DNA editing, progenitor modulation, DMD gene replacement or substitution, and cell transplantation. The second chapter provides more details and precisions on the CRISPR approaches in development for DMD, thus allowing a better understanding of the relevance of our technological choice for the approach that we have developed in this thesis. The third chapter of this thesis aims to demonstrate the ability of Prime editing to introduce or correct point mutations in the DMD gene and restore the expression of the dystrophin protein. We initially designed several pegRNAs to induce the nonsense mutations present in the Canadian population in exons 6, 9, 20, 35, 43, 55 and 61 of the DMD gene. Following very low editing rates varying from 2 to 10%, several optimizations including consecutive repeated treatments, the use of an additional sgRNA to induce a second nick at a distance from the initial nick site, and the simultaneous mutation in the protospacer adjacent motif (PAM) to preserve the induced mutation, permitted to increase by 5.8-fold the editing rate. These strategies subsequently made possible to correct the c.428 G>A mutation in exon 6 of a patient's myoblasts. That was followed by dystrophin expression detected by western blot from proteins coming from the fusion of the myoblasts in myotubes. High-throughput sequencing analyzed by CRISPResso2 showed an INDEL rate less than 1%. The fourth chapter of this thesis aims to demonstrate the ability of Prime editing to efficiently correct the c.8713C>T mutation in exon 59 of the DMD gene whose position at +13 makes it unfavorable to the correction by Prime editing. Several PE2 variants were tested, and the best variant (SpCas9-NGG) was chosen for further experiments. Added to the optimizations of the previous chapter 3, varying the RTT length and additional synonymous mutations at different positions beside the target increased the editing rate by 7-folds. This other strategy was used for the correction of the c.8713C>T mutation in exon 59 of a patient's myoblasts at the editing rate of 22% followed by the dystrophin expression (42%). The fifth chapter of this thesis has demonstrated the ability of Prime editing to perform in addition to substitutions, deletions, and insertions of nucleotides in the splice sites to mediate exon skipping and restore the dystrophin expression. The strategy consisted of correcting in patient myoblasts, the mutations caused by the deletions of exon 52 (Del52) and exons 45-52 (Del45-52) respectively by modifying the splice donor sites of exons 51 and 53 for their skipping. This allowed the binding of exon 50 to exon 53 and exon 44 to exon 54 respectively for Del52 and Del45-52 permitting the expression of the dystrophin protein. These results are a proof of concept and demonstrate the potential of our approach to effectively modify the DMD gene to mediate the dystrophin restoration in DMD patients. However, it will be important to develop an efficient delivery system using for example a Dual-AAV vector or virus like particles (VLPs) with skeletal and cardiac muscle-specific capsids or glycoproteins, respectively, for in vivo experimentation of these strategies. It will also be relevant to develop a multiplex Prime-editing approach to simultaneously target multiple DMD gene mutations and examine the off-target and immunological effects.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/120165
Date11 July 2023
CreatorsHappi Mbakam, Cedric
ContributorsTremblay, Jacques-P., Skuk, Daniel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 195 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0031 seconds