Return to search

n-Larguras de conjuntos de funções suaves sobre a esfera 'S POT. d' / n-Widths of sets of smooth functions on the sphere 'S POT. d'

Orientadores: Alexander Kushpel, Sergio Antonio Tozoni / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T06:22:45Z (GMT). No. of bitstreams: 1
Stabile_RegisLeandroBraguim_M.pdf: 861507 bytes, checksum: 9a902b95c3b1523df6cf1e1e230b9505 (MD5)
Previous issue date: 2009 / Resumo: O objetivo principal da dissertação é realizar um estudo sobre estimativas de n-larguras de conjuntos de funções suaves sobre a esfera unitária d-dimensional real. Esses conjuntos são gerados por operadores multiplicadores. Outro objetivo é desenvolver um texto em português sobre as n-larguras mais importantes, suas propriedades e suas relações. Este objetivo é realizado no primeiro capítulo. No segundo capítulo é realizado um estudo rápido e com poucas demonstrações sobre Análise Harmônica na esfera d-dimensional real.
No terceiro capítulo são estudadas estimativas de médias de Levy para uma classe de normas especiais e em seguida esses resultados são aplicados no estudo de estimativas inferiores para as n-larguras de Kolmogorov e Gel'fand e superiores para a de Kolmogorov,
para operadores multiplicadores gerais. No quarto e último capítulo são estudadas estimativas para n-larguras de conjuntos de funções suaves, finitamente e infinitamente diferenciáveis sobre a esfera. Várias dessas estimativas são assintoticamente exatas em termos de ordem e as constantes que determinam a ordem dessas estimativas são determinadas explicitamente. / Abstract: The purpose of this work is to study estimates of n-widths of sets of smooth
functions on the d-dimensional real unitary sphere. These sets are generated by multipliers
operator. Another aim is to develop a text in portuguese about the most important n-widths,
your properties and relations. We do this in the first chapter. In the second chapter, we develop a brief and proof-less study about Harmonic Analysis on the d-dimensional real unitary sphere. In the third chapter, the Levy means for a class of special norms are studied and applied in the study of lower estimates for the Kolmorogov and Gel'fand's n-widths, and upper estimates for the Kolmorogov's, for general multipliers operators. In the fourth and last chapter, the estimates for the n-widths of sets of smooth functions, finitely and infinitely differentiables on the sphere are studied. Several of these estimates are asymptotically exacts in terms of order and the constants that determine the order of these estimatives are given in a explicit form. / Mestrado / Mestre em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307350
Date03 May 2009
CreatorsStábile, Régis Leandro Braguim, 1985-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Tozoni, Sergio Antonio, 1953-, Kushpel, Alexander, 1958-, Bertoni, Vanessa, Bordin, Benjamin
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format90 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds