Return to search

An Evaluation of Machine Learning Approaches for Hierarchical Malware Classification

With an evermore growing threat of new malware that keeps growing in both number and complexity, the necessity for improvement in automatic detection and classification of malware is increasing. The signature-based approaches used by several Anti-Virus companies struggle with the increasing amount of polymorphic malware. The polymorphic malware change some minor aspects of the code to be able to remain undetected. Malware classification using machine learning have been used to try to solve this issue in previous research. In the proposed work, different hierarchical machine learning approaches are implemented to conduct three experiments. The methods utilise a hierarchical structure in various ways to be able to get a better classification performance. A selection of hierarchical levels and machine learning models are used in the experiments to evaluate how the results are affected. A data set is created, containing over 90000 different labelled malware samples. The proposed work also includes the creation of a labelling method that can be helpful for researchers in malware classification that needs labels for a created data set.The feature vector used contains 500 n-gram features and 3521 Import Address Table features. In the experiments for the proposed work, the thesis includes the testing of four machine learning models and three different amount of hierarchical levels. Stratified 5-fold cross validation is used in the proposed work to reduce bias and variance in the results. The results from the classification approach shows it achieves the highest hF-score, using Random Forest (RF) as the machine learning model and having four hierarchical levels, which got an hF-score of 0.858228. To be able to compare the proposed work with other related work, pure-flat classification accuracy was generated. The highest generated accuracy score was 0.8512816, which was not the highest compared to other related work.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-18260
Date January 2019
CreatorsRoth, Robin, Lundblad, Martin
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds