Dietary nitrite intake has been implicated in numerous gastrointestinal cancers in humans due to the formation of a group of carcinogens called N-nitroso compounds. The need to estimate their intake is vital in establishing at risk population and to monitor and perhaps one day manage their dietary intake. This is the first study to estimate nitrate and nitrite in selected vegetables, cured and fresh meat in Australian food supply using ion-paired reversed-phased HPLC. Nitrite content in meat products analysed ranged from 0 to 83.9 mg/kg in medallion beef and Frankfurt, respectively; nitrate content ranged from 18.7 mg/kg in minced beef to 142.5 mg/kg in salami. The nitrite content was below the maximum limit set by the Food Standards Australia and New Zealand. Nitrate content in selected vegetables ranged from 123 to 4850 mg/kg in Iceberg lettuce and English spinach, respectively; only minimal nitrite at 20 mg/kg was present in Gai choy, which was most likely due to bacterial contamination during storage. Based on the food consumption pattern of Australians, the dietary nitrite and nitrate intake from bacon were 1.51 and 3.42 mg per capita per day, which was below the Adequate Daily Intake set by the European Union Scientific Committee for food in 1995. Taking into considerations of oral nitrate reduction to nitrite and the endogenous nitrate formation, the upper extreme of dietary nitrite and nitrate intake in Australians were 44 and 2.4 times over the ADI, respectively. However, this does not take into effect of other dietary promoters and inhibitors. Eighteen healthy human volunteers were put on a low nitrate, nitrite and antioxidant diet for three days during which they were fed one serving of cured meat with and without 500 mg of vitamin C. Using GC-MS, N-nitrosodimethylamine was not detected in the urine before or after vitamin C supplementation, suggested that a diet low on nitrate and nitrite cannot produce NDMA and thus may reduce the risk of developing gastrointestinal cancers. Different extraction methods and combination of herbs and spices were demonstrated in vitro to show inhibition against B. cereus, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis and Staphylococcus aureus. In addition, autoclaved turmeric powder at 0.3 % (w/v), hot water extracted turmeric with ginger at 0.5 % and rosemary at 1.0 % showed growth inhibition against Clostridium sporogenes, which was used as a surrogate for Clostridium botulinum. The use of these combinations of herbs and spices may replace or at least reduce the use of nitrite as a preservative in cured meat products to prevent botulism and reduce dietary nitrite intake.
Identifer | oai:union.ndltd.org:ADTP/258688 |
Date | January 2009 |
Creators | Hsu, James Chun Hou, Chemical Sciences & Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded By:University of New South Wales. Chemical Sciences & Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0018 seconds