• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrate, nitrite and nitrosamine: contents and analyses in selected foods; effect of vitamin C supplementation on N-nitrosodimethylamine formation in humans; and an investigation of natural alternatives to nitrites as preservatives in cured meat products

Hsu, James Chun Hou, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Dietary nitrite intake has been implicated in numerous gastrointestinal cancers in humans due to the formation of a group of carcinogens called N-nitroso compounds. The need to estimate their intake is vital in establishing at risk population and to monitor and perhaps one day manage their dietary intake. This is the first study to estimate nitrate and nitrite in selected vegetables, cured and fresh meat in Australian food supply using ion-paired reversed-phased HPLC. Nitrite content in meat products analysed ranged from 0 to 83.9 mg/kg in medallion beef and Frankfurt, respectively; nitrate content ranged from 18.7 mg/kg in minced beef to 142.5 mg/kg in salami. The nitrite content was below the maximum limit set by the Food Standards Australia and New Zealand. Nitrate content in selected vegetables ranged from 123 to 4850 mg/kg in Iceberg lettuce and English spinach, respectively; only minimal nitrite at 20 mg/kg was present in Gai choy, which was most likely due to bacterial contamination during storage. Based on the food consumption pattern of Australians, the dietary nitrite and nitrate intake from bacon were 1.51 and 3.42 mg per capita per day, which was below the Adequate Daily Intake set by the European Union Scientific Committee for food in 1995. Taking into considerations of oral nitrate reduction to nitrite and the endogenous nitrate formation, the upper extreme of dietary nitrite and nitrate intake in Australians were 44 and 2.4 times over the ADI, respectively. However, this does not take into effect of other dietary promoters and inhibitors. Eighteen healthy human volunteers were put on a low nitrate, nitrite and antioxidant diet for three days during which they were fed one serving of cured meat with and without 500 mg of vitamin C. Using GC-MS, N-nitrosodimethylamine was not detected in the urine before or after vitamin C supplementation, suggested that a diet low on nitrate and nitrite cannot produce NDMA and thus may reduce the risk of developing gastrointestinal cancers. Different extraction methods and combination of herbs and spices were demonstrated in vitro to show inhibition against B. cereus, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis and Staphylococcus aureus. In addition, autoclaved turmeric powder at 0.3 % (w/v), hot water extracted turmeric with ginger at 0.5 % and rosemary at 1.0 % showed growth inhibition against Clostridium sporogenes, which was used as a surrogate for Clostridium botulinum. The use of these combinations of herbs and spices may replace or at least reduce the use of nitrite as a preservative in cured meat products to prevent botulism and reduce dietary nitrite intake.
2

Nitrate, nitrite and nitrosamine: contents and analyses in selected foods; effect of vitamin C supplementation on N-nitrosodimethylamine formation in humans; and an investigation of natural alternatives to nitrites as preservatives in cured meat products

Hsu, James Chun Hou, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Dietary nitrite intake has been implicated in numerous gastrointestinal cancers in humans due to the formation of a group of carcinogens called N-nitroso compounds. The need to estimate their intake is vital in establishing at risk population and to monitor and perhaps one day manage their dietary intake. This is the first study to estimate nitrate and nitrite in selected vegetables, cured and fresh meat in Australian food supply using ion-paired reversed-phased HPLC. Nitrite content in meat products analysed ranged from 0 to 83.9 mg/kg in medallion beef and Frankfurt, respectively; nitrate content ranged from 18.7 mg/kg in minced beef to 142.5 mg/kg in salami. The nitrite content was below the maximum limit set by the Food Standards Australia and New Zealand. Nitrate content in selected vegetables ranged from 123 to 4850 mg/kg in Iceberg lettuce and English spinach, respectively; only minimal nitrite at 20 mg/kg was present in Gai choy, which was most likely due to bacterial contamination during storage. Based on the food consumption pattern of Australians, the dietary nitrite and nitrate intake from bacon were 1.51 and 3.42 mg per capita per day, which was below the Adequate Daily Intake set by the European Union Scientific Committee for food in 1995. Taking into considerations of oral nitrate reduction to nitrite and the endogenous nitrate formation, the upper extreme of dietary nitrite and nitrate intake in Australians were 44 and 2.4 times over the ADI, respectively. However, this does not take into effect of other dietary promoters and inhibitors. Eighteen healthy human volunteers were put on a low nitrate, nitrite and antioxidant diet for three days during which they were fed one serving of cured meat with and without 500 mg of vitamin C. Using GC-MS, N-nitrosodimethylamine was not detected in the urine before or after vitamin C supplementation, suggested that a diet low on nitrate and nitrite cannot produce NDMA and thus may reduce the risk of developing gastrointestinal cancers. Different extraction methods and combination of herbs and spices were demonstrated in vitro to show inhibition against B. cereus, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis and Staphylococcus aureus. In addition, autoclaved turmeric powder at 0.3 % (w/v), hot water extracted turmeric with ginger at 0.5 % and rosemary at 1.0 % showed growth inhibition against Clostridium sporogenes, which was used as a surrogate for Clostridium botulinum. The use of these combinations of herbs and spices may replace or at least reduce the use of nitrite as a preservative in cured meat products to prevent botulism and reduce dietary nitrite intake.
3

Évaluation du risque cancérigène associé à la contamination de l’eau potable de puits municipaux par les nitrates/nitrites dans certaines régions rurales du Québec

Chebekoue, Sandrine Fleur 12 1900 (has links)
No description available.
4

Évaluation du risque cancérigène associé à la contamination de l’eau potable de puits municipaux par les nitrates/nitrites dans certaines régions rurales du Québec

Chébékoué, Sandrine Fleur 12 1900 (has links)
La spécialisation des techniques agricoles que nous connaissons ces dernières décennies, particulièrement dans les régions rurales, est à l’origine de l’abus de fertilisants. Ces derniers sont actuellement reconnus comme étant les causes principales de la contamination de l’eau souterraine par les nitrates. Suite à leur ingestion via l’eau potable, les nitrates sont transformés en nitrites par la flore buccale. Une fois dans l’estomac les nitrites réagissent avec certaines amines provenant de l’alimentation pour générer des nitrosamines cancérogènes. L’objectif de notre étude était d’estimer quantitativement l’excès de risque de cancer (ER) pour les populations de sept régions rurales du Québec qui consomme l’eau potable provenant de réseaux municipaux alimentés en eau souterraine. Le territoire à l’étude était caractérisé par une agriculture intensive d’élevage. Les médianes (et 95e centiles) régionales des concentrations de nitrates mesurées dans les réseaux de ces régions étaient de : 0,18 (2,74); 0,48 (10,35); 0,15 (1,28); 0,32 (11); 0,05 (0,76); 0,10 (4,69); 0,09 (2,13) mg N-NO3-/l. Nous avons envisagé un scénario de transformation complète des nitrites et de certaines amines (diméthylamine, diéthylamine, n-butylamine, méthyléthylamine) en nitrosamines spécifiques : N-diméthylnitrosamine (NDMA), N-diéthylnitrosamine (NDEA), N-n-dibutylnitrosamine (NDBA) et N-méthyléthylnitrosamine (NMEA). Pour estimer la concentration de nitrites formés dans l’estomac, nous avons considéré une consommation définie d’eau potable, le volume de l’estomac et un taux de transformation des nitrates en nitrites. Supposant les quantités de nitrites et de chaque amine constantes pendant 1h, nous avons considéré la constante de nitrosation spécifique à chaque amine pour évaluer la dose d’exposition journalière à chaque nitrosamine équivalente formée. Par la suite, la combinaison de cette dose à un estimateur de potentiel cancérogène qhumain spécifique à chaque nitrosamine, nous a permis d’évaluer l’ER associé à chacune d’elles. Globalement l’analyse a démontré que les ER les plus élevés, estimés pour le NDBA, étaient de l’ordre de 10-6, ne contribuant pas de façon significative à une augmentation du risque de cancer pour ces populations. / Specialization of agricultural practices in rural regions over the past few decades has led to overuse of fertilizers which are main causes of groundwater contamination by nitrates. After their ingestion through drinking water, nitrates are transformed into nitrites by the oral flora. Once in the stomach, nitrites react with some amines from food supply to form nitrosamines with some being probably carcinogenic to humans. The aim of this study was to quantitatively estimate the possible excess cancer risk (ER) for populations of seven rural regions in Quebec that consume water from public drinking water systems using groundwater. The studied regions practice extensive breeding agriculture. The regional medians (and 95th percentile) of nitrate levels in water from those seven regions were: 0.18 (2.74); 0.48 (10.35); 0.15 (1.28); 0.32 (11); 0.05 (0.76); 0.10 (4.69) and 0.09 (2.13) mg N-NO3-/l, respectively. Indeed, we first considered a scenario of complete transformation of nitrites and some amines (dimethylamine, diethylamine, n-butylamine and methylethylamine) into specific nitrosamines: N-dimethylnitrosamine (NDMA), N-diethylnitrosamine (NDEA), N-nitrosodi-n-butylamine (NDBA) and N-nitrosomethylethylamine (NMEA). Gastric nitrite concentrations were estimated on the basis of defined drinking water intake, stomach volume, and the transformation rate of nitrates into nitrites. Considering that levels of nitrites and each amine were kept constant for 1 hour, and taking in account the nitrosatability rate constant specific to each amine, we then estimated the daily doses of the corresponding endogenously formed nitrosamines. Furthermore combination of dose with the human cancer potency factor qhuman specific to each nitrosamine, allowed the estimation of excess cancer risk. The highest ER estimated for NDBA was in the order of 10-6, thus not contributing to a significant increase in the risk of cancer for that population.

Page generated in 0.0494 seconds