Return to search

Neuroevolution med tävlingsinriktad samevolution i flera miljöer med ökande komplexitet / Neuroevolution with competitive coevolution in multiple scenes of increasing complexity

NEAT är en neuroevolutionsteknik som kan användas för att träna upp AI-kontrollerade robotar utan att behöva tillföra någon mänsklig expertis eller tidigare kunskap till systemet. Detta arbete undersöker hur väl denna teknik fungerar tillsammans med samevolution för att utveckla robotar i en tävlingsmiljö, med fokus på att testa tekniken på flera olika nivåer med varierande mängd komplexitet i form av väggar och hinder. Tekniken utvärderas genom att låta robotarna tävla mot varandra, deras kompetens mäts sedan från resultaten av dessa tävlingar. Exempelvis deras förmåga att vinna matcher. Resultaten visar att tekniken fungerade bra på nivån med låg komplexitet, men att robotarna har vissa svårigheter att lära sig kompetenta strategier på nivåerna med högre komplexitet. Tekniken har dock potential för flera olika varianter och förbättringar som potentiellt kan förbättra resultatet även på de mer komplexa nivåerna.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-13639
Date January 2017
CreatorsHesselbom, Anton
PublisherHögskolan i Skövde, Institutionen för informationsteknologi
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds