Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-07-13T20:13:32Z
No. of bitstreams: 2
Dissertação - Mauricio Silva Louzeiro - 2016.pdf: 1453255 bytes, checksum: c23898f8b30d7250d9fc245034078281 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-07-14T13:28:30Z (GMT) No. of bitstreams: 2
Dissertação - Mauricio Silva Louzeiro - 2016.pdf: 1453255 bytes, checksum: c23898f8b30d7250d9fc245034078281 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-07-14T13:28:30Z (GMT). No. of bitstreams: 2
Dissertação - Mauricio Silva Louzeiro - 2016.pdf: 1453255 bytes, checksum: c23898f8b30d7250d9fc245034078281 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-03-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we will study a new strategy to minimize a convex function on a simplicial
cone. This method consists in to obtain the solution of a minimization problem through
the root of a semi-smooth equation associated to its optimality conditions. To nd this
root, we use the semi-smooth version of the Newton's method, where the derivative of
the function that de nes the semi-smooth equation is replaced by a convenient Clarke
subgradient. For the case that the function is quadratic, we will see that it allows us to
have weaker conditions for the convergence of the sequence generated by the semi-smooth
Newton's method. Motivated by this new minimization strategy we will also use the
semi-smooth Newton's method to nd roots of two special semi-smooth equations, one
associated to x+ and the another one associated to jxj. / Neste trabalho, estudaremos uma nova estrat egia para minimizar uma fun c~ao convexa
sobre um cone simplicial. Este m etodo consiste em obter a solu c~ao do problema de
minimiza c~ao atrav es da raiz de uma equa c~ao semi-suave associada as suas condi c~oes de
otimalidade. Para encontrar essa raiz, usaremos uma vers~ao semi-suave do m etodo de
Newton, onde a derivada da fun c~ao que de ne a equa c~ao semi-suave e substitu da por
um subgradiente de Clarke conveniente. Para o caso em que a fun c~ao e quadr atica,
veremos que e poss vel obter condi c~oes mais fracas para a converg^encia da sequ^encia gerada
pelo m etodo de Newton semi-suave. Motivados por esta nova estrat egia de minimiza c~ao
tamb em usaremos o m etodo de Newton semi-suave para encontrar ra zes de dois tipos
espec cos de equa c~oes semi-suaves, uma associada a x+ e a outra associada a jxj.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/5724 |
Date | 04 March 2016 |
Creators | Louzeiro, Mauricio Silva |
Contributors | Ferreira, Orizon Pereira, Ferreira, Orizon Pereira, Cruz, José Yunier Bello, Ribeiro, Ademir Alves, Prudente, Leandro da Fonseca |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, 600, -4268777512335152015, -7090823417984401694, 2075167498588264571 |
Page generated in 0.0027 seconds