Return to search

ENDOSOMAL MEMBRANE FUSION IN MACROPHAGES AND NK CELLS

The immune system is comprised of specific cell types that communicate and interact via a range of soluble and surface-bound molecules to defend the body against pathogens. Many gaps remain in our understanding of the subcellular trafficking pathways that regulate the diverse functions of the immune system. The central aim of this thesis was to investigate transport through the endocytic pathway, focussing in particular on the unique organelles and functions of this pathway in immune cells. Two subsets of immune cells were of particular interest in this thesis, macrophages and natural killer (NK) cells. These cell types both perform a range of functions that contribute to both innate and adaptive immunity. Another common thread between these cells is that they both perform functions involving specialised endocytic organelles and pathways. Macrophages utilise their endocytic pathways to perform several unique functions; phagocytosis, endocytosis and degradation of foreign proteins for presentation on MHC class II molecules, and signalling of Toll-like receptors from endosomes. Even secretion of cytokines such as tumour necrosis factor alpha (TNFα) by macrophages requires transport through an endosomal compartment, the recycling endosome, as recently discovered in this laboratory (Murray et al., 2005a). NK cells utilise specialised secretory lysosomes to deliver a lethal hit to carefully identified target cells, providing an alternative example of specialised endocytic trafficking in the immune system. Of the many protein families that regulate subcellular trafficking, the SNARE, Rab, Munc and exocyst proteins were focussed on during this thesis. The localisation and function of members of these families in the endocytic pathway were investigated. Novel results in macrophages concerned the role of Vti1b in endocytosis, a process with implications for MHC class II antigen presentation and TLR detection of endocytosed particles. Alteration of Vti1b protein levels in the cells significantly decreased uptake and degradation of endocytic cargo. A role for Rab11 and the recycling endosome in antigen presentation was also studied. MHC class II was detected in recycling endosomes, and overexpression of a mutant Rab11 protein altered the distribution of MHC class II, suggesting a role for Rab11 in subcellular trafficking during antigen presentation. Preliminary results also suggest a role for the exocyst protein Sec15 at the recycling endosome in macrophages, providing a new target for investigation of the regulation of TNFα secretion. The recycling endosome is emerging as a vital transport hub during cytokine secretion, phagocytosis and possibly other cellular functions in macrophages. This project also involved the unique opportunity to examine primary NK cells from patients with a number of genetic immunodeficiencies caused by mutations to trafficking proteins. The autosomal recessive immunodeficiencies Griscelli syndrome type 2 (GS2) and familial haemophagocytic lymphohistiocytosis types 3 (FHL3) and 4 (FHL4) are associated with loss-of-function of Rab27a, Munc13-4 and syntaxin 11 (Stx11), respectively. These diseases involve a loss of cytotoxic function by cytotoxic CD8+ T lymphocytes and NK cells, but the precise molecular role of these proteins in granule release is incompletely understood. In freshly isolated, resting NK cells from healthy subjects, PMA and ionomycin stimulation or conjugation to susceptible target cells induced colocalisation of endogenous Rab27a and Munc13-4 to perforin-containing granules. In Rab27a-deficient cells, which showed defective degranulation and cytotoxicity induced by signals for both natural and antibody-dependent cellular cytotoxicity, Munc13-4 failed to colocalise with perforin upon activation. Unexpectedly, Rab27a and Munc13-4 localisation to lytic granules was selectively induced by different receptor signals, demonstrating specificity for regulation of lytic granule maturation by target cell ligand expression. Recruitment of the SNARE protein Vti1b, which has not previously been associated with NK cell function or secretory lysosome release, to perforin granules was also discovered. Unexpectedly, Stx11 was not localised to perforin granules. These experiments have contributed to our understanding of the precise molecular roles of Munc13-4, Rab27a and Stx11 in NK cell granule release. Overall, this thesis presents novel and important results from studies of subcellular transport through the endocytic pathways of macrophages and NK cells. These results advance our understanding of several immune functions, and a number of human genetic immunodeficiencies. This new knowledge of the role of endocytic organelles and fusion machinery in these processes provides exciting targets for future research.

Identiferoai:union.ndltd.org:ADTP/254225
CreatorsStephanie Wood
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0014 seconds