Return to search

Entwicklung und Anwendung spektroskopischer 1H-NMR-Methoden zur in vivo Charakterisierung von Xenograft-Tumormodellen bei 17,6 T / Development and application of spectroscopic 1H-NMR methods for in vivo characterisation of xenograft tumor models at 17.6 T

Der Hauptteil der vorliegenden Arbeit befasste sich mit der Anwendung und der Entwicklung von neuen Methoden der spektroskopischen NMR-Bildgebung zur nicht-invasiven metabolischen Charakterisierung von Xenograft-Tumormodellen bei 17,6 T. In einem weiteren Abschnitt wurden verschiedene etablierte Methoden der lokalisierten NMR-Spektroskopie und der spektroskopischen Bildgebung genutzt, um den Metabolismus von Hülsenfrüchten (Pisum sativum) am Hochfeld zu untersuchen. Im experimentellen Teil der Arbeit wurde der selektive Mehrquantenfilter Sel-MQC zur Laktatbestimmung in neun verschiedenen Xenograft-Tumormodellen verwendet. Diese Werte wurden mit Ergebnissen aus der Biolumineszenz und mit der Tumorkontrolldosis 50 (TCD50) der Tumorlinien korreliert. Der Sel-MQC-Editierungsfilter stellte sich als äußerst robuste Methode heraus das Laktat im NMR-Spektrum eindeutig von koresonanten Lipiden des Unterhautfettgewebes bzw. von tumoreigenen Lipiden zu trennen. Der Vergleich mit dem durch die Biolumineszenz bestimmten Laktat zeigte durchweg niedrigere Werte in den NMR-Messungen. Der Hauptgrund für diesen Unterschied besteht wahrscheinlich darin, dass mit der NMR-Methode nur das freie Laktat bestimmt werden kann, wohingegen die Biolumineszenz das gesamte Laktat erfasst. Das mit der NMR detektierbare freie Laktat zeigte allerdings eine mäßige Korrelation zur TCD50 (R = 0,46), wodurch dieser Parameter nur als bedingt prognostisch wertvoll für die Strahlentherapie von Tumoren angesehen werden kann. Der Informationsgehalt pro Messzeit und damit die Effizienz der Standard-Sel-MQC-Editierungssequenz konnte durch verschiedene methodische Erweiterungen gesteigert werden. Eine zusätzliche spektral selektive Wasserunterdrückung und ein weiteres Aufnahmefenster ermöglichte neben der Messung des Laktatsignals die Akquisition sämtlicher Resonanzen des 1H-Spektrums mit einer kurzen Echozeit. Somit konnten zusätzlich das Gesamtcholin und die Methyl- und Metylengruppen der Lipide aufgenommen werden. Neben dem Laktat erwies sich das Verhältnis von Lipid-Methylensignal zu Gesamtcholin (L1/tCho) als aussagekräftigster Parameter, um zwei untersuchte Xenograft-Tumormodelle zu unter-scheiden. Die spektroskopische Sel-MQC-Bildgebungssequenz, deren k-Raumantastung in der Regel mit reiner Phasenkodierung durchgeführt wird, konnte durch eine Verwendung eines Lesegradienten beschleunigt werden. Die bei dem Sel-MQC-Filter auftretenden typischen Artefakte im Bereich der Wasserresonanz sind durch zwei Aufnahmen nach dem Dixon-Prinzip und einem anschließenden Additionsverfahren unterdrückbar. Bei einer ausreichenden Aufnahmezeit, die abhängig vom T2* der zu editierenden Resonanz ist, kann mit der Methode eine nahezu ähnlich hohe Sensitivität wie mit dem rein phasenkodierten Experiment erreicht werden. Eine in die Sequenz eingefügte frequenzselektive Refokussierung der Laktat-CH3-Gruppe ermöglichte die Aufnahme mehrerer Laktatechos ohne eine Phasenmodulation durch die J-Kopplung im Signal zu erhalten. Die nach einer Anregung erhaltenen Echos können zur weiteren Beschleunigung der Sequenz oder zur Bestimmung der apparenten transversalen Relaxationszeit des editieren Metaboliten verwendet werden. Das Grundprinzip des Sel-MQC-Filters konnte in einem umgekehrten Verfahren dazu verwendet werden mobile Lipide im Tumor ohne das koresonante Laktatsignal zu detektieren, um damit die Lipiddetektion zu spezifizieren. Da zur Unterdrückung des Metabolitensignals nur die J-Kopplung ausgenutzt wird, müssen weder Relaxationszeiten noch Diffusionskoeffizienten für die Editierung bekannt sein. Die Aufnahme des Lipidsignals wird dabei in einer Präparation erreicht, was die Sequenz robust gegenüber Bewegungsartefakten macht. Die Methode kann beispielsweise mit Diffusionsgradienten kombiniert werden, um den apparenten Diffusionskoeffizienten mobiler Lipide im Tumorgewebe zu bestimmen. Das hohe Magnetfeld von 17,6 T und damit die vergrößerte chemische Verschiebung eigneten sich insbesonders dazu spektroskopische Messungen an Pflanzensystemen durchzuführen. Im letzten Teil der Arbeit wurden unterschiedliche lokalisierte 1D-, 2D-NMR-Methoden und die spektroskopische Bildgebung verwendet, um den Wildtyp und eine Mutantenform des Pisum sativum nicht-invasiv metabolisch zu untersuchen. Die mit der NMR bestimmten Metabolitenkonzentrationen im Endosperm des Pisum sativum korrelierten mit Resultaten aus biochemischen Auswertungen. Weiterhin konnten mit den NMR-Methoden auch Ergebnisse gewonnen werden, die mit biochemischen und histologischen Verfahren nicht erreicht werden können. Die Untersuchung von Pflanzen – oder wie hier von Pflanzensamen – mit spektroskopischen NMR-Methoden bieten zusätzliche und für bestimmte Fragestellungen auch einzigartige Ansätze deren Metabolismus in vivo zu untersuchen. / The primary topic of this thesis is the development and application of new spectroscopic NMR imaging methods for non-invasive metabolic characterization of xenograft tumor models at 17.6 T. Additional work includes the use of various established methods of localized NMR spectroscopy and spectroscopic imaging to study the metabolism of legumes (Pisum sativum) at high magnetic field strengths. In the experimental part of the work, a selective multiple quantum filter (Sel-MQC) was used to detect and estimate lactate content in nine different xenograft tumor models. The lactate concentration was correlated with results from both the lactate values from quantitative bioluminescence imaging and the tumor control dose 50 (TCD50) of the tumor lines. The Sel-MQC editing filter is an extremely robust method to separate lactate clearly from co-resonant lipids in the NMR spectrum. These lipid signals originate from subcutaneous adipose tissue and intra-tumoral mobile lipids. The comparison of the NMR lactate values with the results from the quantitative bioluminescence showed consistently lower lactate concentration in the NMR measurements. It has been determined that the main reason for this difference is that the NMR method can only detect the free lactate, whereas with the bioluminescence technique the entire (free and bound) lactate can be estimated. The NMR lactate, however, showed only a moderate correlation with the TCD50 (R = 0.46), although it is important to note that this parameters can only be regarded as conditional prognostic value for the radiation therapy of tumors. The information content per unit measurement time and thus the efficiency of standard Sel-MQC editing sequence could be increased by several methodological enhancements. An additional spectral selective water suppression scheme and a second signal acquisition window allowed – beside the detection of lactate – the acquisition of all other 1H NMR resonances with a short echo time. Using this method in vivo for tumor characterization, the lactate resonance, the total choline signal and the methyl and methylene groups of mobile lipids could be detected in the same scan. In addition to the lactate, the ratio of lipid methylene to total choline (L1/tCho ratio) appeared to be a significant parameter when distinguishing between two different types of xenograft tumor models. The classical spectroscopic Sel-MQC pulse sequence, where spatial localization is performed by pure phase encoding, could be accelerated by applying a read gradient. Typical artifacts from the water resonance after Sel-MQC filtering could be suppressed by using the two scan Dixon principle to separate the edited metabolite signal from the residual water resonance. A phase sensitive signal addition of the two acquisitions resulted in artefact-free metabolite images. Further, it was shown that when the acquisition time is adjusted (depending on T2* of the edited resonance), the method employing the read gradient is almost as sensitive as the pure phase encoded experiment. The frequency selective refocusing of the lactate CH3-group allowed the acquisition of multiple lactate echoes without phase-modulation from the J-coupling in the signal. The multiple echoes could be used either to further accelerate the sequence or to estimate the apparent transversal relaxation time of the metabolite. The basic principle of the Sel-MQC filter was also used in a reverse manner to detect mobile lipids in tumor tissue without signal contamination from the co-resonant lactate. This increases the specificity of the method to the mobile lipid in tumor tissue. The principle for the suppression of the co-resonant metabolite signal is based on the J-coupling and therefore neither relaxation times nor diffusion coefficients must be known for successful mobile lipid detection. The lipid editing is achieved in a single preparation, which makes the method robust against motion artefacts. The sequence can be combined with other methods, for example, by adding diffusion gradients to determine the apparent diffusion coefficient of mobile lipids in tumors. The high magnetic field of 17.6 T and the large chemical shift is particularly suited to perform non-invasive and non-destructive spectroscopic measurements in plant systems. In the last part of this thesis, different localized 1D and 2D NMR methods and spectroscopic imaging were used to investigate the metabolism of wild type and mutant forms of Pisum sativum. Metabolite concentration in the endosperm of Pisum sativum estimated with localized NMR spectroscopy was correlated with results from biochemical analysis. Further, with the different non-invasive NMR methods, results were obtained which cannot be achieved by other biochemical or histological analyses. Localized NMR spectroscopic methods provide additional and unique approaches to answer biological and biochemical questions in plant systems or – as in this work – even in plant seeds.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:4212
Date January 2009
CreatorsMelkus, Gerd
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds