Return to search

Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet

Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:38585
Date02 March 2020
CreatorsPenke, Melanie, Larsen, Per S., Schuster, Susanne, Dall, Morten, Jensen, Benjamin A.H., Gorski, Theresa, Meusel, Andrej, Richter, Sandy, Vienberg, Sara G., Treebak, Jonas T., Kiess, Wieland, Garten, Antje
PublisherElsevier
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1016/j.mce.2015.05.028

Page generated in 0.0015 seconds