Return to search

Active Learning for Named Entity Recognition with Swedish Language Models / Aktiv Inlärning för Namnigenkänning med Svenska Språkmodeller

The recent advancements of Natural Language Processing have cleared the path for many new applications. This is primarily a consequence of the transformer model and the transfer-learning capabilities provided by models like BERT. However, task-specific labeled data is required to fine-tune these models. To alleviate the expensive process of labeling data, Active Learning (AL) aims to maximize the information gained from each label. By including a model in the annotation process, the informativeness of each unlabeled sample can be estimated and hence allow human annotators to focus on vital samples and avoid redundancy. This thesis investigates to what extent AL can accelerate model training with respect to the number of labels required. In particular, the focus is on pre- trained Swedish language models in the context of Named Entity Recognition. The data annotation process is simulated using existing labeled datasets to evaluate multiple AL strategies. Experiments are evaluated by analyzing the F1 score achieved by models trained on the data selected by each strategy. The results show that AL can significantly accelerate the model training and hence reduce the manual annotation effort. The state-of-the-art strategy for sentence classification, ALPS, shows no sign of accelerating the model training. However, uncertainty-based strategies consistently outperform random selection. Under certain conditions, these strategies can reduce the number of labels required by more than a factor of two. / Framstegen som nyligen har gjorts inom naturlig språkbehandling har möjliggjort många nya applikationer. Det är mestadels till följd av transformer-modellerna och lärandeöverföringsmöjligheterna som kommer med modeller som BERT. Däremot behövs det fortfarande uppgiftsspecifik annoterad data för att finjustera dessa modeller. För att lindra den dyra processen att annotera data, strävar aktiv inlärning efter att maximera informationen som utvinns i varje annotering. Genom att inkludera modellen i annoteringsprocessen, kan man estimera hur informationsrikt varje träningsexempel är, och på så sätt låta mänskilga annoterare fokusera på viktiga datapunkter. Detta examensarbete utforskar hur väl aktiv inlärning kan accelerera modellträningen med avseende på hur många annoterade träningsexempel som behövs. Fokus ligger på förtränade svenska språkmodeller och uppgiften namnigenkänning. Dataannoteringsprocessen simuleras med färdigannoterade dataset för att evaluera flera olika strategier för aktiv inlärning. Experimenten evalueras genom att analysera den uppnådda F1-poängen av modeller som är tränade på datapunkterna som varje strategi har valt. Resultaten visar att aktiv inlärning har en signifikant förmåga att accelerera modellträningen och reducera de manuella annoteringskostnaderna. Den toppmoderna strategin för meningsklassificering, ALPS, visar inget tecken på att kunna accelerera modellträningen. Däremot är osäkerhetsbaserade strategier är konsekvent bättre än att slumpmässigt välja datapunkter. I vissa förhållanden kan dessa strategier reducera antalet annoteringar med mer än en faktor 2.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-303866
Date January 2021
CreatorsÖhman, Joey
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:583

Page generated in 0.0026 seconds