This thesis presents the study of the effects of CdTe-TGA quantum dots (QDs) on optical limiting ability of different phthalocyanine (Pc) complexes (5-12) containing Zn, Ga, In central metals and substituted with benzyloxyphenoxy, phenoxy, tertbutylphenoxy and amino groups in solution and in poly (methyl methacrylate) (PMMA) films. The optical limiting parameters of Pcs were higher for tertbutylphenoxy when compared to benzyloxyphenoxy and phenoxy substituents, in DMSO. Non-peripheral substitution decreased the optical limiting parameters. Third-order susceptibility (Im[χ⁽³⁾]/α) values of Pcs in the absence and presence of CdTe QDs were in the 10⁻¹² to 10⁻¹° esu cm range. Hyperpolarizabilities (γ) ranged from 10⁻³¹ to 10⁻²⁹ esu L for Pc alone or in mixture with QDs. The effect on the optical limiting abilities of twelve embedded phthalocyanines containing In, Ga, Zn and Al as central metals in polymer thin films was also examined. The effect of forming a covalent link zinc tetraamino phthalocyanine (12) with poly (methyl acrylic acid) (PMAA) and Zn (13) and OHAl (14) octacarboxy phthalocyanines to polyethylenimine (PEI) was also studied. The hyperpolarizability of the twelve phthalocyanines in polymer was found to be in the range of 10⁻²⁶ to 10⁻²⁴ esu.L. This is significantly higher than the hyperpolarizabilities of these phthalocyanines in solution. Non-linear optical (NLO) parameters were determined for phthalocyanine complexes containing In, Ga and Zn as central metals when embedded in PMMA polymer in the presence of quantum dots (QDs). The QDs mainly employed were CdTe-TGA (TGA = thioglylcolic acid). Triplet lifetimes increased as k (excited state (σex) to ground state (σg) absorption cross section ratio) values decreased with the addition of the CdTe-TGA to the phthalocyanines. The saturation energy density (Fsat) values were smaller in the films when compared to the solutions. Complex 7 tetrasubstituted with tert-butylphenoxy groups at non-peripheral positions was also studied in the presence of CdS-TGA, CdSe-TGA, fullerenes and single walled carbon nanotubes. There is a general improvement in optical limiting ability of Pc complexes in the presence of nanomaterials (NMs). Degradation studies seem to indicate that placing a phthalocyanine within a polymer thin film may protect it slightly from photo- and thermal degradation. 3(4), 15(16)-Bis-(4 -tert-butyl-phenoxy)-10, 22-diaminohemiporphyrazinato chloroindium hemiporphyrazine was synthesized from 1, 3, 5-triaminobenzene and 4-tert-butyl-phenoxyisoindoline. The structure of the complex was confirmed using mass, nuclear magnetic resonance and infrared spectroscopies. The nonlinear parameters of the compound was also analyzed in dimethylformamide and found to be significantly greater than previously analyzed phthalocyanines.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4464 |
Date | January 2014 |
Creators | Britton, Jonathan |
Publisher | Rhodes University, Faculty of Science, Chemistry |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Doctoral, PhD |
Format | 192 leaves, pdf |
Rights | Britton, Jonathan |
Page generated in 0.0027 seconds